Cartilage microbial DNA patterns have been recently characterized in osteoarthritis (OA). The objectives of this study were to evaluate the gut origins of cartilage microbial DNA, to characterize cartilage microbial changes with age, obesity, and OA in mice, and correlate these to gut microbiome changes. We used 16S rRNA sequencing performed longitudinally on articular knee cartilage from germ-free (GF) mice following oral microbiome inoculation and cartilage and cecal samples from young and old wild-type mice with/without high-fat diet-induced obesity (HFD) and with/without OA induced by destabilization of the medial meniscus (DMM) to evaluate gut and cartilage microbiota. Microbial diversity was assessed, groups compared, and functional metagenomic profiles reconstructed. Findings were confirmed in an independent cohort by clade-specific qPCR. We found that cartilage microbial patterns developed at 48 h and later timepoints following oral microbiome inoculation of GF mice. Alpha diversity was increased in SPF mouse cartilage samples with age (P = 0.013), HFD (P = 5.6E-4), and OA (P = 0.029) but decreased in cecal samples with age (P = 0.014) and HFD (P = 1.5E-9). Numerous clades were altered with aging, HFD, and OA, including increases in Verrucomicrobia in both cartilage and cecal samples. Functional analysis suggested changes in dihydroorotase, glutamate-5-semialdehyde dehydrogenase, glutamate-5-kinase, and phosphoribosylamine-glycine ligase, in both cecum and cartilage, with aging, HFD, and OA. In conclusion, cartilage microbial DNA patterns develop rapidly after the introduction of a gut microbiome and change in concert with the gut microbiome during aging, HFD, and OA in mice. DMM-induced OA causes shifts in both cartilage and cecal microbiome patterns independent of other factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828335 | PMC |
http://dx.doi.org/10.1007/s11357-023-01004-z | DOI Listing |
Nanoscale
December 2024
Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai - 602105, Tamil Nadu, India.
High-strength, strongly bonded and self-healing materials are of great interest for several applications; however, the experimental and design of all such properties in a single material is challenging. In the present work, inspired by cartilage tissue, polyacrylamide (PAM)-based tough and durable dimer (PAM-Ag and PAM-BNOH) and trimer (PAM-Ag-BNOH) nanocomposites were synthesized by encapsulating silver (Ag) and hydroxylated hexagonal boron nitride (BNOH). Strong interfacial interaction was achieved by introducing (computational modelling and DFT approaches) noncovalent bonds in the dimer and trimer nanohybrids.
View Article and Find Full Text PDFInt J Rheum Dis
November 2024
Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
Periodontitis (PD) is characterized by the host's inflammatory responses to microbial dental biofilm dysbiosis, potentially resulting in tooth loss if left untreated. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease leading to synovial inflammation and destruction of joint cartilage and bone. The suggested association between PD and RA is based on the potential of chronic inflammation present in periodontitis, which could induce alterations in proteins through post-translational modifications, leading to the formation of citrullinated and carbamylated protein antigens.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:
Rheumatoid arthritis, a chronic autoimmune disorder characterized by joint inflammation, is thought to be exacerbated by bacterial infections, notably Proteus mirabilis. This study explores the combined effects of quercetin, a potent antioxidant and anti-inflammatory flavonoid, and chondroitin sulfate, known for its cartilage-protective properties, as a potential therapeutic approach. Molecular docking analyses revealed favourable interactions between these compounds and key pro-inflammatory cytokines IL-6 and TNF-α, suggesting their potential to disrupt inflammation-related signaling pathways.
View Article and Find Full Text PDFBiomedicines
September 2024
Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits.
View Article and Find Full Text PDFNutrients
October 2024
Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
Degenerative joint disease osteoarthritis (OA) is characterized by the degeneration of cartilage, synovial inflammation and low-grade systemic inflammation in association with microbial dysbiosis and intestinal barrier defects. Butyrate is known for its anti-inflammatory and barrier protective effects and might benefit OA patients. In a double-blind placebo-controlled randomized trial, the effects of four to five weeks of oral treatment with sustained-release (SR) butyrate tablets (600 mg/day) on systemic inflammation and immune function were studied in hand OA patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!