Understanding intracranial aneurysm sounds via high-fidelity fluid-structure-interaction modelling.

Commun Med (Lond)

Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway.

Published: November 2023

Background: Since the 1960s, the origins of intracranial aneurysm bruits and musical murmurs have been debated, with proposed mechanisms ranging from self-excitation (i.e., resonance) by stable pulsatile flow, to vibration caused by unstable (laminar vortex shedding or turbulent) flow. This knowledge gap has impeded the use of intracranial sounds a marker of aneurysm remodelling or rupture risk. New computational techniques now allow us to model these phenomena.

Methods: We performed high-fidelity fluid-structure interaction simulations capable of understanding the magnitude and mechanisms of such flow-induced vibrations, under pulsatile flow conditions. Six cases from a previous cohort were used.

Results: In five cases, underlying flow instabilities present as broad-band, random vibrations, consistent with previously-described bruits, while the sac also exhibits resonance, rocking back and forth in different planes of motion, consistent with previously described musical murmurs. Both types of vibration have amplitudes in the range of 0.1 to 1 μm. The murmurs extend into diastole, after the underlying flow instability has dissipated, and do not exhibit the characteristic repeating frequency harmonics of previously hypothesized vortex-shedding mechanisms. The remaining case with stable pulsatile flow does not vibrate. Spectrograms of the simulated vibrations are consistent with previously reported microphone and Doppler ultrasound recordings.

Conclusions: Our results provide a plausible explanation for distinct intracranial aneurysm sounds and characterize the mechanical environment of a vibrating aneurysm wall. Future work should aim to quantify the deleterious effects of these overlooked stimuli on the vascular wall, to determine which changes to the wall makeup are associated with vibration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636010PMC
http://dx.doi.org/10.1038/s43856-023-00396-5DOI Listing

Publication Analysis

Top Keywords

intracranial aneurysm
12
pulsatile flow
12
aneurysm sounds
8
musical murmurs
8
stable pulsatile
8
underlying flow
8
vibrations consistent
8
flow
6
aneurysm
5
understanding intracranial
4

Similar Publications

Background: Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs' natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs' rupture status (i.

View Article and Find Full Text PDF

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology

January 2025

Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.

Purpose: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine clinical settings.

Methods: Two distinct cohorts of head CT angiography (CTA) data were assembled to validate an AI model. Cohort 1, comprising gold-standard consecutive CTA cases, was used in an MRMC study involving six board-certified general radiologists.

View Article and Find Full Text PDF

Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.

View Article and Find Full Text PDF

Traumatic aneurysms represent less than 1 percent of intracranial aneurysms and middle meningeal artery pseudoaneurysms are even rare. Traumatic aneurysms are usually pseudoaneurysms formed by the rupture of all the layers of the vessel wall. They are associated with high mortality as they can present as epidural, subdural, and rarely intraparenchymal hematoma.

View Article and Find Full Text PDF

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!