Managed honey bees have experienced high rates of colony loss recently, with pesticide exposure as a major cause. While pesticides can be lethal at high doses, lower doses can produce sublethal effects, which may substantially weaken colonies. Impaired learning performance is a behavioral sublethal effect, and is often present in bees exposed to insecticides. However, the effects of other pesticides (such as fungicides) on honey bee learning are understudied, as are the effects of pesticide formulations versus active ingredients. Here, we investigated the effects of acute exposure to the fungicide formulation Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on honey bee olfactory learning performance in the proboscis extension reflex (PER) assay. We also exposed a subset of bees to only the active ingredients to test which formulation component(s) were driving the learning effects. We found that the formulation produced negative effects on memory, but this effect was not present in bees fed only boscalid and pyraclostrobin. This suggests that the trade secret "other ingredients" in the formulation mediated the learning effects, either through exerting their own toxic effects or by increasing the toxicities of the active ingredients. These results show that pesticide co-formulants should not be assumed inert and should instead be included when assessing pesticide risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636155PMC
http://dx.doi.org/10.1038/s41598-023-46948-6DOI Listing

Publication Analysis

Top Keywords

active ingredients
16
honey bee
12
learning performance
12
effects
9
bee learning
8
learning effects
8
learning
6
'inert' co-formulants
4
co-formulants fungicide
4
fungicide mediate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!