The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on supervised deep learning approaches. However, the problem with these solutions is that they need a large database of labeled data. Access to such data is often limited, as it requires a great investment of both time and money. Therefore, in this work we present a solution that allows higher classification scores to be obtained using knowledge transfer from inter-species and inter-pathology self-supervised learning methods. Before training the network for classification, pretraining of the model was performed using self-supervised learning approaches on publicly available unlabeled radiographic data of human and dog images, which allowed substantially increasing the number of images for this phase. The self-supervised learning approaches included the Beta Variational Autoencoder, the Soft-Introspective Variational Autoencoder, and a Simple Framework for Contrastive Learning of Visual Representations. After the initial pretraining, fine-tuning was performed for the collected veterinary dataset using 20% of the available data. Next, a latent space exploration was performed for each model after which the encoding part of the model was fine-tuned again, this time in a supervised manner for classification. Simple Framework for Contrastive Learning of Visual Representations proved to be the most beneficial pretraining method. Therefore, it was for this method that experiments with various fine-tuning methods were carried out. We achieved a mean ROC AUC score of 0.77 and 0.66, respectively, for the laterolateral and dorsoventral projection datasets. The results show significant improvement compared to using the model without any pretraining approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636209 | PMC |
http://dx.doi.org/10.1038/s41598-023-46345-z | DOI Listing |
JMIR Med Inform
January 2025
Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China.
Background: Machine learning models can reduce the burden on doctors by converting medical records into International Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing. Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing values and understanding the context of medical texts, leading to a high error rate.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction.
View Article and Find Full Text PDFIn this article, the authors propose a repurposing of the concept of entrustment to help guide the use of artificial intelligence (AI) in health professions education (HPE). Entrustment can help identify and mitigate the risks of incorporating generative AI tools with limited transparency about their accuracy, source material, and disclosure of bias into HPE practice. With AI's growing role in education-related activities, like automated medical school application screening and feedback quality and content appraisal, there is a critical need for a trust-based approach to ensure these technologies are beneficial and safe.
View Article and Find Full Text PDFPurpose: The classic paradigm of procedural education in medical training has involved trainees learning and performing invasive bedside procedures and subsequently teaching these procedures to more junior trainees. Many existing resident-as-teacher curricula focus on cognitive domains; there has been a lack of literature examining the transition from learner to teacher in procedural education. This hypothesis-generating instrumental case study explored how expert procedural educators transitioned from novice procedural educators to experts.
View Article and Find Full Text PDFGut Microbes
December 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
Changes in the gut microbiota are associated with obesity and may influence weight loss. We are currently implementing a sustained multidisciplinary collaborative weight management (MCWM) approach to weight loss. We report significant improvements in participant health status after 6 months, along with alterations in the structure, interactions, and metabolic functions of the microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!