Background: Tuberculosis (TB) is one of the most important infectious diseases worldwide. Resistance to antituberculosis drugs develops because of genetic mutations that render drug-activating enzymes inactive, changes in cell wall permeability, and increased expression of efflux pump genes and also combination therapy with efflux pump inhibitors may be more effective in drug-resistant TB patients.
Aims: To investigate the effect of verapamil (VR) on isonicotinic acid hydrazide (INH) resistance and the expression of 21 efflux pump genes in INH monoresistant MTBC clinical isolates.
Study Design: In vitro study.
Methods: In our mycobacteriology laboratory, 10 INH monoresistant and 10 primary anti-TB drug-susceptible MTBC clinical isolates were selected. Drug susceptibilities for INH and VR were studied by resazurin microtiter plate method and minimum inhibitory concentration (MIC) was determined. Additionally, mRNA gene expressions were investigated by quantitative Real Time Polymerase Chain Reaction for 21 efflux gene regions.
Results: While no change was observed in INH MICs of susceptible isolates under VR effect, 6 (60%) of the 10 INH-resistant isolates showed a decrease of less than one dilution in INH MIC under VR effect. VR significantly reduced resistance in resistant isolates (p < 0.05). INH monoresistant MTBC isolates showed a 2.85-fold expression increase in the Rv1634 region of the Major Facilitator Superfamily efflux family under INH stress (p = 0.029). No statistically significant change was observed in other efflux gene regions. Herein, increased expression was observed in the Rv1634 region, consistent with other studies in the literature, and this was associated with drug resistance. No significant change in expression was detected in other gene regions.
Conclusion: The effect of efflux pump inhibitor VR on INH MIC levels is promising for the treatment of resistant TB. However, studies with more resistant strains are needed to evaluate the efficacy of efflux pump genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmmb.2023.100428 | DOI Listing |
Biomed Pharmacother
December 2024
Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands. Electronic address:
Escherichia coli is amongst the most frequent causative agent of nosocomial infections and the overexpression of the efflux pump gene acrB plays a major role in its resistance to various antibiotics. In this study, we evaluated two indole phytochemicals, camalexin and brassinin, as potential AcrB efflux pump inhibitors. Among these two phytochemicals, camalexin increased the accumulation of ethidium in acrB proficient E.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. Electronic address:
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. Electronic address:
Aeromonas schubertii infections has caused severe economic losses in aquaculture in China. In this study, we first induced enrofloxacin (ENR) resistance in A. schubertii strains and then analyzed the mechanisms of drug resistance using transcriptomics and metabolomics.
View Article and Find Full Text PDFJ Photochem Photobiol B
December 2024
All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia.
In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins.
View Article and Find Full Text PDFmBio
December 2024
Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA.
is a serious health threat because of the rapid progressive evolution of antimicrobial resistance and efficient transmission from zoonotic as well as human sources. Resistance to fluoroquinolones and macrolides is particularly concerning as this compromises the two most effective oral antibiotic agents currently available for human campylobacteriosis. Here, we report on the prevalence and worldwide distribution of the operon , which encodes an efflux pump conferring high levels of combined resistance to fluoroquinolones and macrolides in strains isolated from poultry ( = 75) and children ( = 177).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!