The energetic particle radiation environment on the International Space Station (ISS) includes both charged and neutral particles. Here, we make use of the unique capabilities of the Radiation Assessment Detector (ISS-RAD) to measure both of these components simultaneously. The Charged Particle Detector (CPD) is, despite its name, capable of measuring neutrons in the energy range from about 4 MeV to a few hundred MeV. Combined with data from the Fast Neutron Detector (FND) in the 0.2 to 8 MeV range, we present the first broad-spectrum measurements of the neutron environments in various locations within the ISS since an early Bonner-Ball experiment that was conducted before the Station was fully constructed. The data presented here span the time period from February 2016 to February 2022. In addition to presenting broad-spectrum neutron fluence measurements, we show correlations of the measured neutron dose equivalent with charged-particle dose rates. The ratio of charged-particle dose to neutron dose equivalent is found to be relatively stable within the ISS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lssr.2023.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!