Aims: TAFA2, a cytokine specifically expressed in the central nervous system, plays a vital role in neuronal cell survival. TAFA2 deficiency has been correlated to various neurological disorders in mice and humans. However, the underlying mechanism remains elusive, especially its membrane-binding receptor through which TAFA2 functions. This study aimed to identify the specific binding receptor responsible for the anti-apoptotic effects of TAFA2.

Main Method: Co-immunoprecipitation (Co-IP) and quantitative mass spectrometry-based proteomic analysis were employed to identify potential TAFA2 binding proteins in V5 knockin mouse brain lysates. Subsequent validation involved in vitro and in vivo Co-IP and pull-down using specific antibodies. The functional analysis included evaluating the effects of ADGRL1 knockout, overexpression, and Lectin-like domain (Lec) deletion mutant on TAFA2's anti-apoptotic activity and analyzing the intracellular signaling pathways mediated by TAFA2 through ADGRL1.

Key Findings: Our study identified ADGRL1 as a potential receptor for TAFA2, which directly binds to TAFA2 through its lectin-like domain. Overexpression ADGRL1, but not ADGRL1Δ, induced apoptosis, which could be effectively suppressed by recombinant TAFA2 (rTAFA2). In ADGRL1 cells or re-introducing with ADGRL1Δ, responses to rTAFA2 in suppressing cell apoptosis were compromised. Increased cAMP, p-PKA, p-CREB, and BCL2 levels were also observed in response to rTAFA2 treatment, with these responses attenuated in ADGRL1 or ADGRL1Δ-expressing cells.

Significance: Our results demonstrated that TAFA2 directly binds to the lectin-like domain of ADGRL1, activating cAMP/PKA/CREB/BCL2 signaling pathway, which is crucial in preventing cell death. These results implicate TAFA2 and its receptor ADGRL1 as potential therapeutic targets for neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.122241DOI Listing

Publication Analysis

Top Keywords

lectin-like domain
12
tafa2
11
adgrl1
8
adgrl1 activating
8
activating camp/pka/creb/bcl2
8
camp/pka/creb/bcl2 signaling
8
signaling pathway
8
neurological disorders
8
receptor tafa2
8
adgrl1 potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!