In this study, fermentation experiments were conducted under mesophilic, thermophilic, and hyperthermophilic conditions to investigate adaptation of microbial communities and its effect on extracellular enzyme activities toward degradation of cellulose, hemicellulose and proteins in dairy manure. Hyperthermophilic conditions transformed the microbiome structure and stimulated activity of extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes. Specifically, the activities of protease, cellulose 1,4-β-cellobiosidase, and β-glucosidase secreted by hyperthermophilic microbes were higher by 22%, 47% and 49% compared to those produced by mesophilic and thermophilic communities. Enhanced hydrolytic activity of hyperthermophilic microbes enabled improved feedstock solubilization and production of 39% and 22% more soluble COD than mesophilic and thermophilic microbes, respectively. Connections between hydrolytic function and microbial community structure at various temperatures were assessed using the PICRUSt2 computational tool. Genus Caldicoprobacter was identified as the primary candidate responsible for increased production of thermostable endo-1,4-β-glucanase, β-glucosidase and endo-1,4-β-xylanase, and enhanced hydrolytic performance of hyperthermophilic microbial community.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129978DOI Listing

Publication Analysis

Top Keywords

mesophilic thermophilic
12
dairy manure
8
genus caldicoprobacter
8
hyperthermophilic conditions
8
hyperthermophilic microbes
8
enhanced hydrolytic
8
microbial community
8
hyperthermophilic
6
manure acidogenic
4
acidogenic fermentation
4

Similar Publications

Probing the Dual Role of Ca in the LH1-RC Complex by Constructing and Analyzing Ca-Bound and Ca-Free LH1 Complexes.

Biomolecules

January 2025

Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

The genome of the mildly thermophilic hot spring purple sulfur bacterium, (.) , contains a multigene family that encodes a series of α- and β-polypeptides, collectively forming a heterogeneous light-harvesting 1 (LH1) complex. The LH1, therefore, offers a unique model for studying an intermediate phenotype between phototrophic thermophilic and mesophilic bacteria, particularly regarding their LH1 transition and moderately enhanced thermal stability.

View Article and Find Full Text PDF

Circular Economy Applied to Sludge Minimization: The STAR Project.

Membranes (Basel)

January 2025

Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy.

The management of biological sludge from wastewater treatment plants (WWTPs) poses a significant environmental challenge due to increasing sludge production and the presence of emerging pollutants. This study investigates an innovative solution by integrating a thermophilic aerobic membrane reactor (TAMR) into the sludge treatment line of a medium-size WWTP, aiming to minimize biological sludge output while enhancing resource recovery. The study involved a six-month monitoring of an industrial-scale TAMR system, assessing the reduction in volatile solids (VSs) in thickened sludge and evaluating the compatibility of TAMR residues with conventional activated sludge (CAS) systems.

View Article and Find Full Text PDF

The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability.

View Article and Find Full Text PDF

Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process.

Bioresour Technol

January 2025

School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation.

View Article and Find Full Text PDF

Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!