Glycolipids mimicking biosurfactants of the synthetic origin as new immunomodulating and anticandidal derivatives.

Carbohydr Res

Dept. of Glycochemistry, Lab. Sugars & Glycomimics, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia. Electronic address:

Published: December 2023

The immunobiological effectivity of glycolipids mimicking biosurfactants of the synthetic origin was followed up using macrophages cell line RAW264.7. These derivatives with different number of mannose units connected glycosidically or through triazole linker, and all having octyl aglycone, were evaluated with respect to their structure - immunomodulation activity relationship. This comparative study showed that the structural variations of the selected derivatives influenced the immunobiological cell behaviour as concerned pro-inflammatory TNF-α, IL-6, IL-1α, IL-17, IL-12 and anti-inflammatory IL-10 cytokines production and enhancement of RAW264.7 cell proliferation. The derivatives with mannose units linked through triazole linkers exerted in some cases stronger immunomodulative potency than (di)mannosides. On the other hand, a presence of triazole linker is a less favourable for an effective candidacidal activity as determined by in vitro using Candida albicans biofilm. The design of new defined immunomodulating formulas of the synthetic origin as possible antifungal agents and prospective participants in drug delivery systems may be of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2023.108978DOI Listing

Publication Analysis

Top Keywords

synthetic origin
12
glycolipids mimicking
8
mimicking biosurfactants
8
biosurfactants synthetic
8
mannose units
8
triazole linker
8
origin immunomodulating
4
immunomodulating anticandidal
4
derivatives
4
anticandidal derivatives
4

Similar Publications

Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals.

Molecules

December 2024

Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.

Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects.

View Article and Find Full Text PDF

Given the natural origins of flavylium derivatives, their chemical modifications, and their large potential uses in food, medicine, or green chemistry, the present review is a comprehensive study of flavylium-derived compounds. Several topics such as the green extraction and isolation techniques of flavylium derivatives including their chemical modifications and various characterization tools such as NMR, HPLC, and mass spectrometry are discussed in the review. Furthermore, the use of these derivatives in medicine, food, and materials science is presented, highlighting their relevance and the need for further investigation.

View Article and Find Full Text PDF

Compartmentalized models with coupled catalytic networks are considered as "protocells" in the context of research related to the origin of life. To model the kinetics of a simple cellular uptake-metabolism process, we use a compartmentalized protocell system that combines liposome-encapsulated intravesicular reporter pairs with co-encapsulated enzymes to monitor the membrane transport of a substrate (analyte uptake) and its subsequent enzymatic reaction inside the vesicles (metabolism to the product). The intravesicular chemosensing ensembles consist of the macrocycles cucurbit[7]uril or p-sulfonatocalix[4]arene and matching fluorescent dyes to set up suitable reporter pairs.

View Article and Find Full Text PDF

In illicit drug markets, the most recently expanding new synthetic opioid subclass is benzimidazoles, also known as nitazenes, which were originally developed as analgesics in the 1950s. The emergence of this classical, potent drug family has attracted extensive research interest in the field of forensic toxicology; however, information on their psychological and physical dependence is very limited. Herein, we evaluated the rewarding effects of four nitazene analogs using a battery of in vivo experiments, with a positive control drug (isotonitazene).

View Article and Find Full Text PDF

Diacylation of Peptides Enables the Construction of Functional Vesicles for Drug-Carrying Liposomes.

Angew Chem Int Ed Engl

January 2025

University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES OF AMERICA.

Membrane-forming phospholipids are generated in cells by enzymatic diacylation of non-amphiphilic polar head groups. Analogous non-enzymatic processes may have been relevant at the origin of life and could have practical utility in membrane synthesis. However, aqueous head group diacylation is challenging in the absence of enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!