Background: CCL19 is a chemokine involved in cancer research due to its important role in the tumor microenvironment (TME) and clinical relevance in cancers. This study aimed to analyze transcription expression, genomic alteration, association with tumor immune microenvironment of CCL19 expression and its prediction value for prognosis and responses to immunotherapy for patients with cancers.

Methods: RNA sequencing data and corresponding clinicopathological information of a total of large-scale cancer patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Multiplex immunofluorescence (mIF) was implemented to identify differential infiltration of Treg, CD8 T cells, and tumor-associated macrophages, while CCL19 immunohistochemistry was conducted on 182 breast cancer samples from a real-world cohort.

Results: Based on large-scale multi-center survival analysis of cancer patients, we found the prognosis of patients with high CCL19 expression was prominently better than those with low CCL19 expression. For patients from multiple independent cohorts, suppressed CCL19 expression exerts significant progressive phenotype and apoptosis activity of cancers, especially in breast and ovarian cancer. Interestingly, anti-tumor immune cells, specifically the CD8 T cells and macrophages, were clustered from TME by elevated CCL19 expression. Additionally, higher CCL19 levels reflected heightened immune activity and substantial heterogeneity.

Conclusions: In conclusion, our findings support the notion that elevated CCL19 expression is linked to favorable outcomes and enhanced anti-tumor immunity, characterized by increased CD8 T cells within the TME. This suggests the potential of CCL19 as a prognostic marker, predictive biomarker for immunotherapy, therapeutic target of cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683612PMC
http://dx.doi.org/10.18632/aging.205184DOI Listing

Publication Analysis

Top Keywords

ccl19 expression
24
cd8 cells
12
ccl19
11
tumor immune
8
immune microenvironment
8
expression
8
cancer patients
8
elevated ccl19
8
cancer
6
patients
5

Similar Publications

Tertiary Lymphoid Structures as a Biomarker in Immunotherapy and Beyond: Advancing Towards Clinical Application.

Cancer Lett

January 2025

. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:

Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.

View Article and Find Full Text PDF

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.

View Article and Find Full Text PDF

Matrix-mediated activation of murine fibroblast-like synoviocytes.

Exp Cell Res

January 2025

Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:

Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!