A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Domain independent post-processing with graph U-nets: applications to electrical impedance tomographic imaging⋆. | LitMetric

To extend the highly successful U-Net Convolutional Neural Network architecture, which is limited to rectangular pixel/voxel domains, to a graph-based equivalent that works flexibly on irregular meshes; and demonstrate the effectiveness on electrical impedance tomography (EIT).By interpreting the irregular mesh as a graph, we develop a graph U-Net with new cluster pooling and unpooling layers that mimic the classic neighborhood based max-pooling important for imaging applications.The proposed graph U-Net is shown to be flexible and effective for improving early iterate total variation (TV) reconstructions from EIT measurements, using as little as the first iteration. The performance is evaluated for simulated data, and on experimental data from three measurement devices with different measurement geometries and instrumentations. We successfully show that such networks can be trained with a simple two-dimensional simulated training set, and generalize to very different domains, including measurements from a three-dimensional device and subsequent 3D reconstructions.As many inverse problems are solved on irregular (e.g. finite element) meshes, the proposed graph U-Net and pooling layers provide the added flexibility to process directly on the computational mesh. Post-processing an early iterate reconstruction greatly reduces the computational cost which can become prohibitive in higher dimensions with dense meshes. As the graph structure is independent of 'dimension', the flexibility to extend networks trained on 2D domains to 3D domains offers a possibility to further reduce computational cost in training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777538PMC
http://dx.doi.org/10.1088/1361-6579/ad0b3dDOI Listing

Publication Analysis

Top Keywords

graph u-net
12
electrical impedance
8
proposed graph
8
early iterate
8
networks trained
8
computational cost
8
graph
6
domain independent
4
independent post-processing
4
post-processing graph
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!