Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae) is the most expensive and challenging insect pest of commercial pear trees in the Pacific Northwest. Integrated pest management (IPM) programs are working toward relying more heavily on natural enemies to reduce insecticide use. Trechnites insidiosus (Crawford) (Hymenoptera: Encyrtidae) is the main parasitoid of C. pyricola, but little is known about its biology in the region. Developing sampling tools is important for the deployment of IPM programs, including monitoring of natural enemies. In this study, we examined 2 conventional monitoring methods: beat trays and yellow sticky cards, in addition to screened sticky cards and 3D-printed cylinder traps. Additionally, we tested an overwintering trap for the collection of parasitized C. pyricola. The trapping methods were tested in orchards in Oregon and Washington. Unscreened cards caught the most T. insidiosus and C. pyricola, followed by screened cards, cylinder traps, and then beat trays. Beat trays sometimes failed to catch any T. insidiosus, even when it was found in abundance via other methods. Screened cards and cylinder traps reduced bycatch and increased ease of identifying T. insidiosus. Specimens from the cylinder traps were also more suitable for use in molecular analysis. The overwintering traps were effective at capturing parasitized C. pyricola, but were highly variable year to year. The ideal trapping method will vary based on research needs (e.g., DNA preservation, reducing bycatch, catching higher numbers), but both screened sticky cards and cylinder traps were viable methods for monitoring T. insidiosus and its host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toad199 | DOI Listing |
Sci Adv
December 2024
Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
The angular optical trap (AOT) is a powerful technique for measuring the DNA topology and rotational mechanics of fundamental biological processes. Realizing the full potential of the AOT requires rapid torsional control of these processes. However, existing AOT quartz cylinders are limited in their ability to meet the high rotation rate requirement while minimizing laser-induced photodamage.
View Article and Find Full Text PDFbioRxiv
September 2024
Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
The angular optical trap (AOT) is a powerful technique for measuring the DNA topology and rotational mechanics of fundamental biological processes. Realizing the full potential of the AOT requires rapid torsional control of these processes. However, existing AOT quartz cylinders are limited in their ability to meet the high rotation rate requirement while minimizing laser-induced photodamage.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2024
Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, China.
Leg Med (Tokyo)
November 2024
Research Unit of Health Sciences and Technology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; Department of Forensic Medicine, University of Helsinki, P.O. Box 21, FI-00014 Helsinki, Finland; Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland.
Ballistic gelatin has gained a status as standard method for terminal ballistic testing and experimenting. Variation considering the recipe and manufacturing of the blocks exists. The golden standard has been a cuboid gelatin block, dimensions varying according to the type and kinetic energy of the ammunition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2024
School of Aerospace and Automotive Engineering, LERMA Laboratory, International University of Rabat, 11000, Rabat, Morocco.
The global transition towards sustainable automotive vehicles has driven the demand for energy-efficient internal combustion engines with advanced aftertreatment systems capable of reducing nitrogen oxides (NOx) and particulate matter (PM) emissions. This comprehensive review explores the latest advancements in aftertreatment technologies, focusing on the synergistic integration of in-cylinder combustion strategies, such as low-temperature combustion (LTC), with post-combustion purification systems. Selective catalytic reduction (SCR), lean NOx traps (LNT), and diesel particulate filters (DPF) are critically examined, highlighting novel catalyst formulations and system configurations that enhance low-temperature performance and durability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!