Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecules relying on the excited-state intramolecular proton transfer/excited-state proton transfer (ESIPT/ESPT) mechanism are widely used in material science. In the current work, a known β-carboline-based probe TrySy was used to selectively detect explosive trinitrotoluene (TNT) in water. Compared to conventional TNT sensing, which relies mainly on the quenching of the fluorescence signal, TrySy could perform nanomolar detection of TNT via ESPT destabilization and AIE, with a significant fluorescence output. The mechanism followed was validated by computational and experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c05936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!