The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH exhibited an approximately 2.7-fold ECL intensity compared with its small molecular analogue of emissive iridium(III) complex named IrppymIM formed by in situ coordination reaction between iridium(III) solvent complex and imidazole ligands. In addition, a target-catalyzed hairpin assembly (CHA) strategy was employed to further improve the sensitivity of the proposed ECL biosensor, which demonstrated a wide linear range from 1 fM to 1 μM and the limit of detection as low as 0.113 fM (S/N = 3). Significantly, this biosensor was successfully applied to detect U94 gene in plasmids and real virus samples. The recoveries were in the range of 97.0-109.0% for plasmids and 95.7-107.5% for real virus samples with a relative standard deviation (RSD) of 1.87-2.53%. These satisfactory experimental results from the proposed ECL biosensor in this work would inevitably promote the development of new time/cost-effective and sensitive methods to detect HHV-6 with a major global health threat and substantial burden on healthcare in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c04268DOI Listing

Publication Analysis

Top Keywords

u94 gene
16
gene human
12
human herpesvirus
12
coordination reaction
12
ecl biosensor
12
detect u94
8
nanoemitters comprising
8
comprising iridiumiii
8
iridiumiii complexes
8
one-pot coordination
8

Similar Publications

Background: The implications of inherited chromosomally integrated human herpesvirus 6 (iciHHV-6) in solid organ transplantation remain uncertain. Although this trait has been linked to unfavorable clinical outcomes, an association between viral reactivation and complications has only been conclusively established in a few cases. In contrast to these studies, which followed donor-derived transmission, our investigation is the first to examine the pathogenicity of a recipient´s iciHHV-6B and its impact on the graft.

View Article and Find Full Text PDF

The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH exhibited an approximately 2.

View Article and Find Full Text PDF
Article Synopsis
  • Human herpesvirus 6 (HHV-6) is a common β-herpesvirus with two species, HHV-6A and HHV-6B, that have similar genetic features yet different effects on health.
  • The U94 gene, unique to HHV-6, plays crucial roles in the virus’s life cycle and disease mechanisms, influencing things like virus replication and immune responses.
  • U94 also possesses properties that could be harnessed in medical applications, such as countering cancer development through its effects on angiogenesis, making it a focus of ongoing research.
View Article and Find Full Text PDF

Understanding the regulation of development can help elucidate the pathogenesis behind many developmental defects found in humans and other vertebrates. Evidence has shown that alternative splicing of messenger RNA (mRNA) plays a role in developmental regulation, but our knowledge of the underlying mechanisms that regulate alternative splicing are incomplete. Notably, a subset of small noncoding RNAs known as scaRNAs (small cajal body associated RNAs) contribute to spliceosome maturation and function through guiding covalent modification of spliceosomal RNAs with either methylation or pseudouridylation on specific nucleotides, but the developmental significance of these modifications is not well understood.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancers. In spite of initial good response to chemotherapy, the prognosis of TNBC remains poor and no effective specific targeted therapy is readily available. Recently, we demonstrated the ability of U94, the latency gene of human herpes virus 6 (HHV-6), to interfere with proliferation and with crucial steps of the metastatic cascade by using MDA-MB 231 TNBC breast cancer cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!