Maternal separation modifies spontaneous synaptic activity in the infralimbic cortex of stress-resilient male rats.

PLoS One

Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.

Published: November 2023

Glutamate and GABA signaling systems are necessary to maintain proper function of the central nervous system through excitation/inhibition (E/I) balance. Alteration of this balance in the medial prefrontal cortex (mPFC), as an effect of early-life stress, may lead to the development of anxiety and depressive disorders. Few studies exist in the infralimbic division of the mPFC to understand the effect of early-life stress at different ages, which is the purpose of the present work. Newborn Sprague Dawley male rats were subjected to maternal separation (MS) for two weeks. First, tests measuring anxiety- and depression-like behaviors were performed on adolescent and adult rats subjected to MS (MS-rats). Then, to establish a relationship with behavioral results, electrophysiological recordings were performed in neurons of the infralimbic cortex in acute brain slices of infant, adolescent, and adult rats. In the behavioral tests, there were no significant differences in MS-rats compared to control rats at any age. Moreover, MS had no effect on the passive membrane properties nor neuronal excitability in the infralimbic cortex, whereas spontaneous synaptic activity in infralimbic neurons was altered. The frequency of spontaneous glutamatergic synaptic events increased in infant MS-rats, whereas in adolescent MS-rats both the frequency and the amplitude of spontaneous GABAergic events increased without any effect on glutamatergic synaptic responses. In adult MS-rats, these two parameters decreased in spontaneous GABAergic synaptic events, whereas only the frequency of glutamatergic events decreased. These data suggest that rats subjected to MS did not exhibit behavioral changes and presented an age-dependent E/I imbalance in the infralimbic cortex, possibly due to differential changes in neurotransmitter release and/or receptor expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635473PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294151PLOS

Publication Analysis

Top Keywords

infralimbic cortex
16
rats subjected
12
maternal separation
8
spontaneous synaptic
8
synaptic activity
8
activity infralimbic
8
male rats
8
early-life stress
8
adolescent adult
8
adult rats
8

Similar Publications

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination.

View Article and Find Full Text PDF

Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!