A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward a dynamic national transportation noise map: Modeling temporal variability of traffic volume. | LitMetric

Toward a dynamic national transportation noise map: Modeling temporal variability of traffic volume.

J Acoust Soc Am

Blue Ridge Research and Consulting, LLC, Asheville, North Carolina 28801, USA.

Published: November 2023

The National Transportation Noise Map (NTNM) gives time-averaged traffic noise across the continental United States (CONUS) using annual average daily traffic. However, traffic noise varies significantly with time. This paper outlines the development and utility of a traffic volume model which is part of VROOM, the Vehicular Reduced-Order Observation-based model, which, using hourly traffic volume data from thousands of traffic monitoring stations across CONUS, predicts nationwide hourly varying traffic source noise. Fourier analysis finds daily, weekly, and yearly temporal traffic volume cycles at individual traffic monitoring stations. Then, principal component analysis uses denoised Fourier spectra to find the most widespread cyclic traffic patterns. VROOM uses nine principal components to represent hourly traffic characteristics for any location, encapsulating daily, weekly, and yearly variation. The principal component coefficients are predicted across CONUS using location-specific features. Expected traffic volume model sound level errors-obtained by comparing predicted traffic counts to measured traffic counts-and expected NTNM-like errors, are presented. VROOM errors are typically within a couple of decibels, whereas NTNM-like errors are often inaccurate, even exceeding 10 decibels. This work details the first steps towards creation of a temporally and spectrally variable national transportation noise map.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0022356DOI Listing

Publication Analysis

Top Keywords

traffic volume
20
traffic
15
national transportation
12
transportation noise
12
noise map
12
traffic noise
8
volume model
8
hourly traffic
8
traffic monitoring
8
monitoring stations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!