Boosting Oxygen Reduction Reaction Kinetics by Designing Rich Vacancy Coupling Pentagons in the Defective Carbon.

J Am Chem Soc

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

Published: November 2023

In the energy conversion context, the design and synthesis of high-performance metal-free carbon nanomaterials with topological defects for the oxygen reduction reaction (ORR) are essential. Herein, we first report a template-assisted strategy to fabricate carbon defect electrocatalysts with rich vacancy coupling pentagons (VP) as active sites in two-dimensional (2D) carbon nanosheets (VP/CNs). Experimental characterizations verify the presence of abundant VP active sites in the VP/CNs electrocatalyst, and the ORR activity is linearly related to the amounts of VP active sites. spectroscopic results identify that the VP/CNs can catalyze direct O-O bond cleavage, bypassing the formation of traditional *OOH intermediates, resulting in the fast kinetics of ORR via a dissociative pathway. The as-prepared VP/CNs show outstanding intrinsic activity for alkaline ORR (half-wave potential of 0.86 V vs reversible hydrogen electrode) with an almost 99% efficiency for four-electron selectivity, outperforming that using the benchmark of Pt/C. Density functional theory calculations further reveal that the cooperative effect between carbon vacancy and adjacent pentagons significantly increases the charge transfer and achieves a lower ORR reaction energy barrier compared with the counterpart of adjacent pentagons or single pentagon. The well-designed carbon defects pave a new avenue for the rational design of metal-free electrocatalysts with high efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c08556DOI Listing

Publication Analysis

Top Keywords

active sites
12
oxygen reduction
8
reduction reaction
8
rich vacancy
8
vacancy coupling
8
coupling pentagons
8
adjacent pentagons
8
carbon
6
orr
5
boosting oxygen
4

Similar Publications

The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.

View Article and Find Full Text PDF

Objective: To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens.

Methods: RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator.

View Article and Find Full Text PDF

Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.

View Article and Find Full Text PDF

Post-synthesis surface modification of Cu/Zr metal azolate framework: A pathway to highly sensitive electrochemical biosensors for atrazine detection.

Anal Chim Acta

February 2025

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:

Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.

View Article and Find Full Text PDF

With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!