ATM-CHK2-TRIM32 axis regulates ATG7 ubiquitination to initiate autophagy under oxidative stress.

Cell Rep

The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China. Electronic address:

Published: November 2023

Oxidative stress-induced autophagy helps to prevent cellular damage and to maintain homeostasis. However, the regulatory pathway that initiates autophagy remains unclear. We previously showed that reactive oxygen species (ROS) function as signaling molecules to activate the ATM-CHK2 pathway and promote autophagy. Here, we find that the E3 ubiquitin ligase TRIM32 functions downstream of ATM-CHK2 to regulate ATG7 ubiquitination. Under metabolic stress, ROS induce ATM phosphorylation at S1981, which in turn phosphorylates CHK2 at T68. We show that CHK2 binds and phosphorylates TRIM32 at the S55 site, which then mediates K63-linked ubiquitination of ATG7 at the K45 site to initiate autophagy. In addition, Chk2 mice show an aggravated infarction phenotype and reduced phosphorylation of TRIM32 and ubiquitination of ATG7 in a stroke model. We propose a molecular mechanism for autophagy initiation by ROS via the ATM-CHK2-TRIM32-ATG7 axis to maintain intracellular homeostasis and to protect cells exposed to pathological conditions from stress-induced tissue damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.113402DOI Listing

Publication Analysis

Top Keywords

atg7 ubiquitination
8
initiate autophagy
8
ubiquitination atg7
8
autophagy
6
atm-chk2-trim32 axis
4
axis regulates
4
atg7
4
regulates atg7
4
ubiquitination
4
ubiquitination initiate
4

Similar Publications

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

RNF144A inhibits autophagy by targeting BECN1 for degradation during infection.

Autophagy

November 2024

Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.

is widely used in the laboratory as an infection model for the research on pathogenesis and host defense against gram-positive intracellular bacteria. Macroautophagy (called simply "autophagy" hereafter), is important in the host defense against pathogens, such as bacteria, viruses, and parasites. BECN1 plays a pivotal role in the initiation of autophagy and accumulating evidence indicates that post-translational modifications of BECN1 provide multiple strategies for autophagy regulation.

View Article and Find Full Text PDF

Background: Mortality from breast cancer is principally due to tumor recurrence. Recurrent breast cancers arise from the pool of residual tumor cells, termed minimal residual disease, that survive treatment and may exist in a dormant state for 20 years or more following treatment of the primary tumor. As recurrent breast cancer is typically incurable, understanding the mechanisms underlying dormant tumor cell survival is a critical priority in breast cancer research.

View Article and Find Full Text PDF

Dinotoms possess two evolutionary distinct autophagy-related ubiquitin-like conjugation systems.

Protist

December 2024

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Autophagy is an intracellular degradation mechanism by which cytoplasmic materials are delivered to and degraded in the lysosome-fused autophagosome (autolysosome) and proposed to have been established at an early stage of eukaryotic evolution. Dinoflagellates harboring endosymbiotic diatoms (so-called "dinotoms"), which retain their own nuclei and mitochondria in addition to plastids, have been investigated as an intermediate toward the full integration of a eukaryotic phototroph into the host-controlled organelle (i.e.

View Article and Find Full Text PDF

USP13 regulates ferroptosis in chicken follicle granulosa cells by deubiquitinating ATG7.

Poult Sci

November 2024

Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China. Electronic address:

The development and maturation of follicles are intricately linked to egg production and reproductive performance of chickens. Granulosa cells death directly affects the development and maturation of follicles, thereby impacting the reproductive performance of hens. Ferroptosis is a new type of cell death, it is unknown how it affects the growth and development of chicken follicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!