A multi-detector comparison to determine convergence of measured relative output factors for small field dosimetry.

Phys Eng Sci Med

Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia.

Published: March 2024

The TRS-483 Code of Practice (CoP) provides generic relative output correction factors, [Formula: see text], for a range of detectors and beam energies as used in small field dosimetry. In this work, the convergence of the relative output factors (ROFs) for 6 MV X-ray beams with and without flattening filters was investigated under different combinations of beam collimation and published detector correction factors. The SFD, PFD and CC04 (IBA) were used to measure ROFs of a TrueBeam STx linear accelerator with small fields collimated by the high-definition MLC, which has 2.5 and 5.0 mm projected leaves. Two configurations were used for the collimators: (1) fixed jaws at 10 × 10 cm and (2) with a 2 mm offset from the MLC edge, in line with the recommended geometry from IROC-H as part of their auditing program and published dataset. The [Formula: see text] factors for the three detectors were taken from the TRS483 CoP and other published works. The average differences of ROFs measured by detectors under MLC fields with fixed jaws and with 2 mm jaws offset for the 6 MV-WFF beam are 1.4% and 1.9%, respectively. Similarly, they are 2.3% and 2.4% for the 6MV-FFF beam. The relative differences between the detector-average ROFs and the corresponding IROC-H dataset are 2.0% and 3.1% for the 6 MV-WFF beam, while they are 2.4% and 3.2% for the 6MV-FFF beam at the smallest available field size of 2 × 2 cm. For smaller field sizes, the average ROFs of the three detectors and corresponding results from Akino and Dufreneix showed the largest difference to be 6.6% and 6.2% under the 6 MV-WFF beam, while they are 3.4% and 3.6% under the 6 MV-WFF beam at the smallest field size of 0.5 × 0.5 cm. Some well-published specific output correction factors for different small field detector types give better convergence in the calculation of the relative output factor in comparison with the generic data provided by the TRS-483 CoP. Relative output factor measurements should be performed as close as possible to the clinical settings including a combination of collimation systems, beam types and using at least three different types of small field detector for more accurate computation of the treatment planning system. The IROC-H dataset is not available for field size smaller than 2 × 2 cm for double checks and so that user should carefully check with other publications with the same setting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-023-01351-3DOI Listing

Publication Analysis

Top Keywords

relative output
20
small field
16
6 mv-wff beam
16
correction factors
12
field size
12
beam
9
output factors
8
factors small
8
field
8
field dosimetry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!