Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635924 | PMC |
http://dx.doi.org/10.1007/s40820-023-01216-0 | DOI Listing |
ACS Appl Mater Interfaces
November 2024
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
The high-efficiency utilization of two-dimensional (2D) graphene layers for developing durable multifunctional electromagnetic wave (EMW) absorbing aerogels is highly demanded yet remains challenging. Here, renewable, low-density, high-strength, and large-aspect-ratio ceramic silicon dioxide (SiO) nanofibers were efficiently prepared to assist in the preparation of ultralight yet robust, highly elastic, and hydrophobic graphene aerogels using facile, scalable freeze-drying followed by a carbonization approach. The ceramic nanofibers efficiently prevent the agglomeration of graphene and enhance interfacial interactions, significantly promoting mechanical strength.
View Article and Find Full Text PDFACS Omega
September 2024
Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States.
Cellulose nanofibril-silver (CNF-Ag) hybrid and ultralight silver-infused aerogel were produced using cotton gin trash (CGT), an abundant agro-waste material. This repurposing of CGT was achieved by exploiting its potential for CNF extraction and the in situ synthesis of silver nanoparticles (Ag NPs). CNFs were extracted from CGT through a mechanical shearing process.
View Article and Find Full Text PDFChemSusChem
September 2024
School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
Ultra-lightweight materials often face the formidable challenge of balancing their low density, high porosity, high mechanical stiffness, high thermal and environmental stability, and low thermal conductivity. This study introduces an innovative method for synthesizing high-performance polymer aerogels to address the challenge. Specifically, we detail the production of poly (2,5-dihydroxy-1,4-phenylene pyridine diimidazole) (PIPD or M5) aerogels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China.
The construction of heterogeneous microstructure and the selection of multicomponents have turned into a research hotspot in developing ultralight, multifunctional, high-efficiency electromagnetic wave absorbing (EMA) materials. Although aerogels are promising materials to fulfill the above requirements, the increase in functional fillers inevitably leads to the deterioration of intrinsic properties. Tuning the electromagnetic properties from the structural design point of view remains a difficult challenge.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
ATODATECH LLC Camarillo, California 93010, USA.
The biosorption is considered to be highly efficient for the separation of radionuclide from radioactive wastewater. Herein, the crosslinked chitosan assisted EDTA intercalated Ca-Mg-Al layered double hydroxides composite foam (CS-EDTA-LDH) was synthesized by combining EDTA intercalation and freeze-drying methods. The macroporous and ultralight properties of CS-EDTA-LDH facilitates its rapid adsorption and facile recovery, and the inorganic/organic incorporation can avoid pore collapse and provide numerous adsorption sites, while the EDTA intercalation can enhance the complex capture of U(VI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!