Purpose: To describe katG and inhA mutations, clinical characteristics, treatment outcomes and clustering of drug-resistant tuberculosis (TB) in the State of São Paulo, southeast Brazil.
Methods: Mycobacterium tuberculosis isolates from patients diagnosed with drug-resistant TB were screened for mutations in katG and inhA genes by line probe assay and Sanger sequencing, and typed by IS6110-restriction fragment-length polymorphism for clustering assessment. Clinical, epidemiological and demographic data were obtained from surveillance information systems for TB.
Results: Among the 298 isolates studied, 127 (42.6%) were isoniazid-monoresistant, 36 (12.1%) polydrug-resistant, 93 (31.2%) MDR, 16 (5.4%) pre-extensively drug-resistant (pre-XDR), 9 (3%) extensively drug-resistant (XDR) and 17 (5.7%) susceptible after isoniazid retesting. The frequency of katG 315 mutations alone was higher in MDR isolates, while inhA promoter mutations alone were more common in isoniazid-monoresistant isolates. Twenty-six isolates phenotypically resistant to isoniazid had no mutations either in katG or inhA genes. The isolates with inhA mutations were found more frequently in clusters (75%) when compared to the isolates with katG 315 mutations (59.8%, p = 0.04). In our population, being 35-64 years old, presenting MDR-, pre-XDR- or XDR-TB and being a retreatment case were associated with unfavourable TB treatment outcomes.
Conclusion: We found that katG and inhA mutations were not equally distributed between isoniazid-monoresistant and MDR isolates. In our population, clustering was higher for isolates with inhA mutations. Finally, unfavourable TB outcomes were associated with specific factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-023-04693-8 | DOI Listing |
Antimicrob Agents Chemother
November 2024
Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA.
Isoniazid is an important first-line medicine to treat tuberculosis (TB). Isoniazid resistance increases the risk of poor treatment outcomes and development of multidrug resistance, and is driven primarily by mutations involving , encoding the prodrug-activating enzyme, rather than its validated target, InhA. The chemical tractability of InhA has fostered efforts to discover direct inhibitors of InhA (DIIs).
View Article and Find Full Text PDFRev Soc Bras Med Trop
September 2024
Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Rio de Janeiro, RJ, Brasil.
Background: Few studies in routine settings have confirmed the high accuracy of the Xpert MTB/RIF assay for detecting rifampicin resistance (RR) and the first-line probe assay (FL-LPA) for detecting both RR and isoniazid resistance (INHR).
Methods: The performance of Xpert MTB/RIF and MTBDRplus VER 2.0 LPA was evaluated in 180 Mycobacterium tuberculosis samples collected from January 2018 to December 2019 in Rio de Janeiro, Brazil.
Indian J Tuberc
October 2024
Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, South Sulawesi, Indonesia.
Int J Mycobacteriol
July 2024
National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya.
Background: Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
August 2024
Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!