Background: Cholecystolithiasis is defined as a disease caused by complex and changeable factors. Advanced age, female sex, and a hypercaloric diet rich in carbohydrates and poor in fiber, together with obesity and genetic factors, are the main factors that may predispose people to choledocholithiasis. However, serum biomarkers for the rapid diagnosis of choledocholithiasis remain unclear.
Aims: This study was designed to explore the pathogenesis of cholecystolithiasis and identify the possible metabolic and lipidomic biomarkers for the diagnosis of the disease.
Methods: Using UHPLC-MS/MS and GC-MS, we detected the serum of 28 cholecystolithiasis patients and 19 controls. Statistical analysis of multiple variables included Principal Component Analysis (PCA). Visualization of differential metabolites was performed using volcano plots. The screened differential metabolites were further analyzed using clustering heatmaps. The quality of the model was assessed using random forests.
Results: In this study, dramatically altered lipid homeostasis was detected in cholecystolithiasis group. In addition, the levels of short-chain fatty acids and amino acids were noticeably changed in patients with cholecystolithiasis. They detected higher levels of FFA.18.1, FFA.20.1, LPC16.0, and LPC20.1, but lower levels of 1-Methyl-L-histidine and 4-Hydroxyproline. In addition, glycine and L-Tyrosine were higher in choledocholithiasis group. Analyses of metabolic serum in affected patients have the potential to develop an integrated metabolite-based biomarker model that can facilitate the early diagnosis and treatment of the disease.
Conclusion: Our results highlight the value of integrating lipid, amino acid, and short-chain fatty acid to explore the pathophysiology of cholecystolithiasis disease, and consequently, improve clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787879 | PMC |
http://dx.doi.org/10.1007/s10620-023-08134-6 | DOI Listing |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: Non-human primates (NHP) serve as an important bridge for testing therapeutic agents that have been previously shown to be effective in transgenic mouse models. Our earlier published data using an NHP model of sporadic AD-related pathology that develops abundant cerebral amyloid angiopathy (CAA), squirrel monkeys (SQMs), indicates that chronic treatment with TLR9 agonist, class B CpG ODN, safely ameliorates CAA while promoting cognitive benefits. In the present study, we intended to delineate alterations in brain metabolome induced by chronic CpG ODN administration in order to provide further insight into CpG ODN immunomodulatory capabilities.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration disease (IVDD) is a prevalent orthopedic condition that causes chronic lower back pain, imposing a substantial economic burden on patients and society. Despite its high incidence, the pathophysiological mechanisms of IVDD remain incompletely understood.
Objective: This study aimed to identify metabolomic alterations in IVDD patients and explore the key metabolic pathways and metabolites involved in its pathogenesis.
J Inflamm Res
January 2025
Gastroenterology Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.
Background: Our study examines the relationship between gastroesophageal reflux disease (GERD) and small intestinal bacterial overgrowth (SIBO), focusing on the potential impact of acid-suppressive drugs. We also explore changes in gut microbiota and metabolism in patients with both conditions.
Methods: This study included patients from the Department of Gastroenterology, Beijing Shijitan Hospital, between February 2021 and November 2023.
Mol Cancer
January 2025
Foshan Maternity and Child Healthcare Hospital; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
Background: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!