Oil spills are one of the most dangerous sources that cause serious environmental pollution and fire and explosion. In this work, multifunctional separator silica@polydivinylbenzene/poly 2,6-dimethyl-1, 4-phenyl ether (silica@PDVB/PPE) Janus particles were fabricated via seed emulsion polymerization, causing phase segregation as well as selective modification. The epoxy modified silica is partially covalently bonded to the fabric substrate surface by simple spraying to achieve a strong composite coating. The low surface energy PDVB/PPE forms a micronano rough layered surface, which can achieve a super hydrophobic and lipophile surface (WCA = 155°) and obtain a high flux separation of water and oil at 32,700 L·m·h. At the same time, the Janus composite fabric coating has the advantages of high heat resistance and flame retardant, which is realized by halogen-free flame-retardant unsaturated polyphosphate (PPE), making Janus fabric have potential value in separating oil-water mixtures and fire protection applications. In addition, the coating shows excellent chemical durability. After soaking in various aqueous solvents and organic solvents for 30 h, it can still maintain superhydrophobicity and flame retardant. The coating still has water repellency and flame retardant after 50 washings and mechanical wear and has good mechanical durability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c12590DOI Listing

Publication Analysis

Top Keywords

flame retardant
12
fabric coating
8
janus particles
8
chemical durability
8
coating
5
waterproof flame-retardant
4
fabric
4
flame-retardant fabric
4
coating nail-tie
4
nail-tie structure
4

Similar Publications

The issue of hazardous smoke and toxic gases released from epoxy resins (EP), which often causes casualties in real fires, has limited its application. Therefore, we have developed a novel flame retardant based on a bimetallic-doped phytate-melamine (BPM) structure with Zn and Fe ions incorporated into the polymer matrix using a straightforward solution-based synthetic method. The combustion performance of the composite was evaluated using a cone calorimeter test, which showed that the peak heat release, total heat release, and total smoke production were reduced by 50%, 31.

View Article and Find Full Text PDF

Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study.

Toxics

December 2024

Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.

Background: Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population.

Methods: To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005-2016) were used.

View Article and Find Full Text PDF

The Association Between Brominated Flame Retardants Exposure and Liver-Related Biomarkers in US Adults.

Toxics

November 2024

Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.

Emerging studies demonstrate that exposure to brominated flame retardants (BFRs) can have harmful effects on human health. Our study focused on the relationship between exposure to various BFRs and markers of liver function. To further explore the association between BFR exposure and liver function impairment, we used data from the National Health and Nutrition Examination Surveys (NHANES) for three cycles from 2009 to 2014, leaving 4206 participants (≥20 years of age) after screening.

View Article and Find Full Text PDF

In this study, a sustainable cellulose-based flame-retardant additive was developed, characterized, and incorporated into polypropylene (PP). Microcrystalline cellulose (Cel) was chemically modified with PO using the solvent-free ball-milling mechanochemistry approach at room temperature. This modification enabled phosphorus grafting onto cellulose, significantly enhancing the cellulose charring ability and improving the thermal stability of the char as revealed by thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

This review examines recent advancements in flame retardant technologies for epoxy and bio-epoxy resins, focusing on the chemical grafting of hexachlorocyclotriphosphazene (HCCP) onto carbon fibers (CFs) and the use of reactive flame retardant agents in composite materials. It covers various grafting techniques and analyzes mechanisms behind property enhancements, exploring how these approaches improve thermal stability and flame resistance while addressing sustainability challenges. This review discusses the synergistic effects of bio-based materials and innovative grafting methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!