AI Article Synopsis

  • Biochar improves soil health and crop production while reducing greenhouse gases, highlighting its importance for precision agriculture.
  • A comprehensive analysis of 3899 observations shows that biochar boosts microbial abundance and key soil functions, enhancing processes like nitrification and carbon cycling.
  • Lower pyrolysis temperatures and specific feedstocks, like agricultural biomass, can optimize biochar's effectiveness in promoting beneficial microbial responses but require careful management for optimal results.

Article Abstract

Biochar is a multifunctional soil conditioner capable of enhancing soil health and crop production while reducing greenhouse gas emissions. Understanding how soil microbes respond to biochar amendment is a vital step toward precision biochar application. Here, we quantitatively synthesized 3899 observations of 24 microbial responses from 61 primary studies worldwide. Biochar significantly boosts microbial abundance [microbial biomass carbon (MBC) > colony-forming unit (CFU)] and C- and N-cycling functions (dehydrogenase > cellulase > urease > invertase > ) and increases the potential nitrification rate by 40.8% while reducing cumulative NO by 12.7%. Biochar derived at lower pyrolysis temperatures can better improve dehydrogenase and acid phosphatase and thus nutrient retention, but it also leads to more cumulative CO. Biochar derived from lignocellulose or agricultural biomass can better inhibit NO through modulating denitrification genes and ; repeated biochar amendment may be needed as inhibition is stronger in shorter durations. This study contributes to our understanding of microbial responses to soil biochar amendment and highlights the promise of purpose-driven biochar production and application in sustainable agriculture such that biochar preparation can be tuned to elicit the desired soil microbial responses, and an amendment plan can be optimized to invoke multiple benefits. We also discussed current knowledge gaps and future research needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702529PMC
http://dx.doi.org/10.1021/acs.est.3c04201DOI Listing

Publication Analysis

Top Keywords

microbial responses
16
biochar amendment
12
biochar
11
biochar derived
8
soil
6
microbial
5
amendment
5
responses biochar
4
biochar soil
4
soil amendment
4

Similar Publications

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases.

Cell Mol Life Sci

January 2025

ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shenzhen Bay Laboratory, Shenzhen, Guandong, China.

Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Microglia are dominant immune cells residing in the brain that regulate brain homeostasis and T-cell responses. An important immune function of microglia involves presenting microbial antigens to mucosal-associated invariant T (MAIT) cells; MAIT cells recognize microbial vitamin B-derived metabolites presented by the MHC class I-like molecule, MR1. Our recent findings highlighted a detrimental role for the MR1/MAIT cell axis in Alzheimer's disease (AD) using the 5XFAD mouse model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Ohio State University, Columbus, OH, USA.

Background: Microglia, the innate immune cells of the brain, are a principal player in Alzheimer's Disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Aβ can elicit attempts from microglia to clear and degrade it using phagocytic machinery, spurring damaging neuroinflammation in the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!