We propose a novel ligand-assisted reprecipitation method to synthesize aqueous-phase CsPbBr nanocrystals, the fluorescence intensity of which remained at 51% after 120 h. As a multifunctional additive, cesium trifluoroacetate (Cs-TFA) can improve the surface adsorption energy and induce nanocrystals to show significant anodic electrochemiluminescence (ECL) and stable cathodic ECL performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an01688a | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
From synthesis to application, there are always certain interactions between the polar solvents and perovskite nanocrystals (NCs). To explain the effect of solvent polarity especially on the photoluminescence (PL) properties of NCs is highly desirable, especially for sensing applications. Herein We have synthesized the methylammonium lead mixed halides (MAPbClBr, where n = 0, 0.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFWhen exposed to light, the colloidal perovskite nanoplatelets (NPLs) in the film can fuse into larger grains, and this phenomenon was thought to be closely related to ion migration. However, the available CsPbBr NPLs are not conducive to directly distinguishing this hypothesis. Herein, we prepare mixed-halide perovskite CsPbBrI NPLs by a ligand-assisted reprecipitation method and investigate the photoluminescence evolution of NPLs under laser irradiation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
Chem Commun (Camb)
November 2024
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
A solid-state synthesis of blue-emitting lead halide nanoclusters has been demonstrated for the first time. The solid-state grinding synthesis provides a facile method to produce highly confined lead bromide clusters under ambient conditions. Both CHNHPbBr perovskite magic-sized clusters and lead halide molecular clusters have been produced, as confirmed by comparison to those synthesized using a ligand-assisted reprecipitation method in terms of electronic absorption, photoluminescence, and solid state characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!