Amine-reactive esters of aromatic fluorescent dyes are emerging as imaging probes for nondescript staining of cellular and tissue architectures. We characterised the staining patterns of 14 fluorescent dye ester species with varying physical and spectral properties in the broadly studied human HeLa cell line. When combined with the super-resolution technique expansion microscopy (ExM) involving swellable acrylamide hydrogels, fluorescent esters reveal nanoscale features including cytoplasmic membrane-bound compartments and nucleolar densities. We observe differential labelling patterns linked to the biochemical properties of the conjugated dye. Alterations in staining density and compartment specificity were seen depending on the timepoint of application in the ExM protocol. Additional complexity in labelling patterns was detected arising from inter-ester interactions. Our findings raise a number of considerations for the use of fluorescent esters. We demonstrate esters as a useful addition to the repertoire of stains of the cellular proteome, whether applied either on their own to visualise overall cellular morphology, or as counterstains providing ultrastructural context alongside specific target markers like antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667587PMC
http://dx.doi.org/10.1039/d3nr01129aDOI Listing

Publication Analysis

Top Keywords

differential labelling
8
fluorescent dye
8
expansion microscopy
8
fluorescent esters
8
labelling patterns
8
fluorescent
5
esters
5
labelling human
4
human sub-cellular
4
sub-cellular compartments
4

Similar Publications

To myelinate axons, oligodendrocyte precursor cells (OPCs) must stop dividing and differentiate into premyelinating oligodendrocytes (preOLs). PreOLs are thought to survey and begin ensheathing nearby axons, and their maturation is often stalled at human demyelinating lesions. Lack of genetic tools to visualize and manipulate preOLs has left this critical differentiation stage woefully understudied.

View Article and Find Full Text PDF

While the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.

View Article and Find Full Text PDF

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF

Dual-domain Wasserstein generative adversarial network with hybrid loss for low-dose CT imaging.

Phys Med Biol

January 2025

Capital Normal University, 105, North West Sanhuan Road, Haidian District, Beijing, Beijing, None Selected, 100048, CHINA.

Objective: Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of X-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, which can negatively impact diagnostic accuracy. This study aims to develop a novel approach to improve LDCT imaging performance.

View Article and Find Full Text PDF

Combined antiretroviral therapy (cART) has dramatically improved the quality of life for people living with HIV (PLWH). However, over 4 million PLWH are over the age of fifty and experience accompanying HIV-associated neurocognitive disorders (HAND). To understand how HIV impacts the central nervous system, a reliable and feasible model of HIV is necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!