Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA-coated colloids can crystallize into a multitude of lattices, ranging from face-centered cubic to diamond, opening avenues to producing structures with useful photonic properties. The potential design space of DNA-coated colloids is large, but its exploration is hampered by a reliance on chemically modified DNA that is slow and expensive to commercially synthesize. Here we introduce a method to controllably tailor the sequences of DNA-coated particles by covalently appending new sequence domains onto the DNA grafted to colloidal particles. The tailored particles crystallize as readily and at the same temperature as those produced direct chemical synthesis, making them suitable for self-assembly. Moreover, we show that particles coated with a single sequence can be converted into a variety of building blocks with differing specificities by appending different DNA sequences to them. This method will make it practical to identify optimal and complex particle sequence designs and paves the way to programming the assembly kinetics of DNA-coated colloids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm01105d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!