In this study, the efficacy of two of the best performing green solvents for the fractionation of lignocellulosic biomass, cholinium arginate (ChArg) as biobased ionic liquid (Bio-IL) and ChCl:lactic acid (ChCl:LA, 1:10) as natural deep eutectic solvent (NADES), was investigated and compared in the pretreatment of an agri-food industry waste, apple fibers (90°C for 1 h). For the sake of comparison, 1-butyl-3-methylimidazolium acetate (BMIM OAc) as one of the best IL able to dissolve cellulose was also used. After the pretreatment, two fractions were obtained in each case. The results gathered through FTIR and TG analyses of the two materials and the subsequent DNS assay performed after enzymatic treatment led to identify ChArg as the best medium to delignify and remove waxes, present on the starting apple fibers, thus producing a material substantially enriched in cellulose (CRM). Conversely, ChCl:LA did not provide satisfactorily results using these mild conditions, while BMIM OAc showed intermediate performance probably on account of the reduced crystallinity of cellulose after the dissolution-regeneration process. To corroborate the obtained data, FTIR and TG analyses were also performed on the residues collected after the enzymatic hydrolysis. At the end of the pretreatment, ChArg was also quantitatively recovered without significant alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628488PMC
http://dx.doi.org/10.3389/fchem.2023.1270221DOI Listing

Publication Analysis

Top Keywords

apple fibers
8
bmim oac
8
ftir analyses
8
challenging dess
4
dess ils
4
ils valorization
4
valorization food
4
food waste
4
waste case
4
case study
4

Similar Publications

Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed.

View Article and Find Full Text PDF

Beneficial activities of phenolic compounds in the gastrointestinal tract, such as antiradical activity, are affected by the food matrix. The aim of this study was to investigate the influence of one constituent of the food matrix (dietary fiber β-glucan) on the release and antiradical activity of phenolic compounds from apples in gastrointestinal digestion. Simulated digestion in vitro was conducted on whole apples without or with added β-glucan.

View Article and Find Full Text PDF

Porphyrin-Based Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction of Tebuconazole and Propiconazole.

J Sep Sci

January 2025

Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.

Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes.

View Article and Find Full Text PDF

It is still a challenge to use a fast and efficient method for preserving fresh-cut fruits from browning. To address this problem, we developed konjac glucomannan (KGM) incorporated with elderberry anthocyanins (EA) to form film-forming solution (KEA) combined with polyvinylpyrrolidone (PVP) solution to produce KEA/PVP fiber films by microfluidic blow spinning (MBS). The introduction of PVP and EA improved the spinnability and function properties of KGM-based fiber film, respectively.

View Article and Find Full Text PDF

This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!