Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The airfoil blade is the primary component of a wind turbine, and its aerodynamic properties play a crucial role in determining the energy conversion efficiency of these blades. Many researchers have proposed different airfoil modifications intending to enhance the aerodynamic characteristics and limit the unsteady interaction with the atmospheric boundary layer. This study evaluates the benefits of mounting wedge tails (WTs) on the trailing edge of an airfoil. The aerodynamic characteristics of a 2-D, steady-state NACA 0021 airfoil featuring the wedge tails (WT) and fish wedge tails (FWT) were studied computationally by employing the shear stress transport (SST) k-ω turbulence model. Different WT and FWT configurations were studied at various wedge length (L) to wedge height (H) ratios, L/H, at the airfoil's trailing edge. The effects of different L/H ratios, including L/H > 1, L/H = 1, and L/H < 1, were considered in the present study to determine the optimal configuration to achieve the maximum glide ratio, C/C at the Reynolds number of 180,000. The findings indicate that the performance of the NACA 0021 airfoil was notably affected by the height of the tail; however, the length had only a minor impact when L/H was less than 1. The mounted FWT resulted in significant enhancements to both the lift and glide ratio of the airfoil. Specifically, the lift ratio experienced an increase of over 41 % compared to the clean airfoil, while the glide ratio increased by more than 31 %. These improvements were observed at an ideal height and length of 2.5 % and 1 % of the airfoil, respectively. Moreover, the mounted FWT performed better than the Gurney flap using the same configurations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628666 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!