In this paper, we present the results of experiments on samples of β-GaO single crystals under a project aimed at assessing and improving the scintillation performance of this material by studying scintillation and radioluminescence mechanism and its limitations. In addition to standard experiments, such as scintillation light yields and time profiles, radio-, and thermoluminescence, we developed and tested a new and promising two-beam experiment, in which a sample is excited by an X-ray beam and additionally stimulated by an IR laser diode. Fe and Mg doping compensate for the inherent n-type conductivity of β-GaO to obtain semi-insulating single crystals for large-area substrates and wafers. At the same time, residual Fe and Ir are ubiquitous uncontrolled impurities leached from the Ir crucibles used to grow large bulk crystals by the Czochralski method. For these experiments, we selected four samples cut from the Czochralski grown 2-cm diameter β-GaO single crystal boules; one with a reduced Fe content, two unintentionally Fe- and Ir-doped (UID) with lower and higher Fe content, and one doped with Mg. We find that steady-state radioluminescence spectra measured at temperatures between 10 and 350 K are dominated by the UV emission peaking at about 350-370 nm. Unfortunately, even for the best sample with a reduced Fe-content, the intensity of this emission drops precipitously with the temperature down to about 10 % at 300 K. From the two-beam experiments, we conclude that recombination via inadvertent Fe impurity involving three charge states (2+, 3+, and 4+) may reduce a steady-state UV emission of β-GaO under X-ray excitation by as much as 60-70 %, one-third to one-half of which is due to the recombination (specific for Fe-doped β-GaO) involving the 4+ and 3+ charge states of Fe and the remaining 50-70 % being due to a more familiar route typical of other oxides, involving the 2+ and 3+ charge states of Fe. These losses are at higher temperatures enhanced by a thermally activated redistribution of self-trapped holes (STHs). In addition, the trapping of electrons by Fe and holes by Mg, Fe, and Ir may be responsible for scintillation light loss and reduction of the zero-time amplitude essential for the fast timing scintillation applications. Despite indirect evidence of competitive recombination in β-GaO involving a deep Ir donor level, we could not quantitatively assess losses of the UV steady state radioluminescence light due to the inadvertent Ir impurity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628680 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21240 | DOI Listing |
Beilstein J Org Chem
December 2024
College of Chemistry and Material Science, Guangdong University of Education, Guangzhou 510303, China.
A novel series of D-A-D-type 9-phenyl-9-phosphafluorene oxide (PhFlOP) derivatives was prepared and is reported herein. The synthetic protocol involved 5 steps from commercially available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final CsCO-facilitated nucleophilic substitution (77-91% yield). The characterization data obtained from IR and NMR spectroscopy (H, C, F, and P) as well as HRMS spectrometry were in full agreement with the expected structures, and single-crystal X-ray diffraction analysis was conducted to confirm the structure of compound .
View Article and Find Full Text PDFManganese (Mn)-sensing riboswitches protect bacteria from Mn toxicity by upregulating expression of Mn exporters. The Mn aptamers share key features but diverge in other important elements, including within the metal-binding core. Although X-ray crystal structures of isolated aptamers exist, these structural snapshots lack crucial details about how the aptamer communicates the presence or absence of ligand to the expression platform.
View Article and Find Full Text PDFNat Chem
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids.
View Article and Find Full Text PDFNat Chem
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!