Introduction: Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses.
Methods: We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering.
Results: Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields.
Discussion: Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628443 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1247853 | DOI Listing |
BMC Plant Biol
January 2025
Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
Studying genetic variability through the phenotypic performance of genotypes is crucial in the breeding program. Therefore, evaluating both yield performance and stability across diverse environments is essential in yield trials to identify high-yield potential and stable cultivars. In this study, we employed 12 univariate and 10 multivariate stability models to analyze how genotype (G), environment (E), and their interaction (G × E) affect the yield performance of 32 barley genotypes across 10 environments.
View Article and Find Full Text PDFMalting quality of barley is a complex characteristic, which is influenced by a combination of interacting traits that are regulated by various genetic and environmental factors. The activities of various enzymes play pivotal roles in determining the malting quality, as they drive the biochemical processes responsible for converting barley saccharides and proteins into fermentable sugars and amino acids during the malting process. In this study, 14 malting barley cultivars were used to investigate the relationship between enzyme activities and malting quality traits.
View Article and Find Full Text PDFTransgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
Cadmium (Cd) toxicity in agricultural soil is increasing globally and significantly impacts crop production and food safety. Tibetan hull-less barley ( L. var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!