Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severe spinal cord injury (SCI) affects the ability of functional standing and walking. As the locomotor central pattern generator (CPG) in the lumbosacral spinal cord can generate a regulatory signal for movement, it is feasible to activate CPG neural network using intra-spinal micro-stimulation (ISMS) to induce alternating patterns. The present study identified two special sites with the ability to activate the CPG neural network that are symmetrical about the posterior median sulcus in the lumbosacral spinal cord by ISMS in adult rats. A reversal of flexion and extension can occur in an attempt to generate a stepping movement of the bilateral hindlimb by either reversing the pulse polarity of the stimulus or changing the special site. Therefore, locomotor-like activity can be restored with monopolar intraspinal electrical stimulation on either special site. To verify the motor function regeneration of the paralyzed hindlimbs, a four-week locomotor training with ISMS applied to the special site in the SCI + ISMS group (n=12) was performed. Evaluations of motor function recovery using behavior, kinematics and physiological analyses, were used to assess hindlimb function and the results showed the stimulation at one special site can promote significant functional recovery of the bilateral hindlimbs (P<0.05). The present study suggested that motor function of paralyzed bilateral hindlimbs can be restored with monopolar ISMS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628655 | PMC |
http://dx.doi.org/10.3892/etm.2023.12259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!