Foot drop is a gait disturbance characterized by difficulty in performing ankle dorsiflexion during the swing phase of the gait cycle. Current available evidence shows that functional electrical stimulation (FES) on the musculature responsible for dorsal ankle flexion during gait can have positive effects on walking ability. This study aims to present a proof of concept for a novel easy-to-use FES system and evaluates the biomechanical effects during gait in stroke patients, compared to unassisted walking. Gait was quantitatively evaluated in a movement analysis laboratory for five subjects with chronic stroke, in basal condition without assistance and in gait assisted with FES. Improvements were found in all temporospatial parameters during FES-assisted gait, evidenced by statistically significant differences only in gait speed (p=0.02). Joint kinematics showed positive changes in hip abduction and ankle dorsiflexion variables during the swing phase of the gait cycle. No significant differences were found in the Gait Deviation Index. In conclusion, the present pilot study demonstrates that the use of this FES system in the tibialis anterior muscle can cause gait functional improvements in subjects with foot drop due to chronic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR58425.2023.10304779DOI Listing

Publication Analysis

Top Keywords

fes system
12
chronic stroke
12
gait
11
stroke patients
8
pilot study
8
foot drop
8
ankle dorsiflexion
8
swing phase
8
phase gait
8
gait cycle
8

Similar Publications

Addressing the Gaps: Online Psychoeducational Support for Cancer Caregivers in Morocco-The Sanadoc Initiative.

J Cancer Educ

January 2025

Biomedical and Translational Research Laboratory, Faculty of Medicine, Pharmacy, and Dental Medicine, Sidi Mohamed Ben Abdellah University, Fes, Morocco.

Article Synopsis
  • Family caregivers of cancer patients in Morocco encounter major obstacles due to lack of legal recognition and support systems.
  • The article emphasizes the need for alternative solutions tailored to caregivers’ specific needs, suggesting online platforms to boost skills and provide psychological support.
  • The Sanadoc project is introduced as a potential innovative solution to help alleviate the challenges faced by these caregivers.
View Article and Find Full Text PDF
Article Synopsis
  • A recirculating aquaculture system (RAS) was built with a denitrification bioreactor to improve nitrogen removal from the water, using FeS as an electron donor.
  • The addition of cultured fish led to a significant reduction in nitrogen levels (NO-N and NH-N), achieving a NO-N removal efficiency of 79.04% and maintaining favorable conditions for fish growth and survival.
  • Analysis of microbial communities in the denitrification bioreactor revealed greater diversity compared to synthetic wastewater systems, indicating the process's potential for enhancing nitrogen management in aquaculture settings.
View Article and Find Full Text PDF

Background: Flat epithelial atypia (FEA), a rare breast proliferative lesion, is often diagnosed following core biopsy (CB) of mammographic microcalcifications. In the prospective multi-institution TBCRC 034 trial, we investigate the upgrade rate to ductal carcinoma in situ (DCIS) or invasive cancer following excision for patients diagnosed with FEA on CB.

Patients And Methods: Patients with a breast imaging reporting and data system (BI-RADS) ≤ 4 imaging abnormality and a concordant CB diagnosis of FEA were identified for excision.

View Article and Find Full Text PDF

In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities.

Water Res

December 2024

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China.

The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.

View Article and Find Full Text PDF

Background: Foot drop is a common condition for patients with upper motor neuron syndrome such as cerebral palsy (CP). This study aimed to investigate the effects of functional electrical stimulation (FES) on gait function, quality of life, and FES satisfaction in adults with CP and foot drop. To analyze effects over time, an observational, longitudinal study was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!