Accurate assessment of hand dexterity plays a critical role in informing rehabilitation and care of upper-limb hemiparetic stroke patients. Common upper-limb assessments, such as the Box and Blocks Test and Nine Hole Peg Test, primarily evaluate gross motor function in terms of speed. These assessments neglect an individual's ability to finely regulate grip force, which is critical in activities of daily living, such as manipulating fragile objects. Here we present the Electronic Grip Gauge (EGG), an instrumented fragile object that assesses both gross and fine motor function. Embedded with a load cell, accelerometer, and Hall-effect sensor, the EGG measures grip force, acceleration, and relative position (via magnetic fields) in real time. The EGG can emit an audible "break" sound when the applied grip force exceeds a threshold. The number of breaks, transfer duration, and applied forces are automatically logged in real-time. Using the EGG, we evaluated sensorimotor function in implicit grasping and gentle grasping for the non-paretic and paretic hands of 3 hemiparetic stroke patients. For all participants, the paretic hand took longer to transfer the EGG during implicit grasping. For 2 of 3 participants, grip forces were significantly greater for the paretic hand during gentle grasping. Differences in implicit grasping forces were unique to each participant. This work constitutes an important step towards more widespread and quantitative measures of sensorimotor function, which may ultimately lead to improved personalized rehabilitation and better patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR58425.2023.10304693DOI Listing

Publication Analysis

Top Keywords

sensorimotor function
12
grip force
12
implicit grasping
12
instrumented fragile
8
fragile object
8
hemiparetic stroke
8
stroke patients
8
motor function
8
gentle grasping
8
paretic hand
8

Similar Publications

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis.

View Article and Find Full Text PDF

Purposeful movement often requires selection of a particular action from a range of alternatives, but how does the brain represent potential actions so that they can be compared for selection, and how are motor commands generated if movement is initiated before the final goal is identified? According to one hypothesis, the brain averages partially prepared motor plans to generate movement when there is goal uncertainty. This is consistent with the idea that motor decision-making unfolds through competition between internal representations of alternative actions. An alternative hypothesis holds that only one movement, which is optimized for task performance, is prepared for execution at any time.

View Article and Find Full Text PDF

Background: Head-mounted displays can be used to offer personalized immersive virtual reality (IVR) training for patients who have suffered an Acquired Brain Injury (ABI) by tailoring the complexity of visual and auditory stimuli to the patient's cognitive capabilities. However, it is still an open question how these virtual environments should be designed.

Methods: We used a human-centered design approach to help define the characteristics of suitable virtual training environments for ABI patients.

View Article and Find Full Text PDF

Context: Sensorimotor impairments are common sequela following concussion, but recovery following a concussion is often determined through examiner scored clinical testing. There are emerging technologies that provide objective methods to determine physiological impairment after concussion, but the psychometrics of these tools are lacking and must be established for use in clinical practice.

Objective: The purpose of this study was to examine the test-retest reliability and provide reliable change estimates in healthy young adults for outcomes from 3 emerging technologies providing objective assessments of sensorimotor function in healthy young adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!