Recent developments in soft wearable robots have shown promise for assistive and rehabilitative use-cases. For inflatable approaches, a major challenge in developing portable systems is finding a balance between portability, performance, and usability. In this paper, we present a textile-based robotic sleeve that can provide functional elbow flexion assistance and is compatible with a portable actuation unit (PAU). Flexion is driven by a curved textile actuator with internal pneumatic supports (IPS). We show that the addition of IPS improves torque generation and increases battery-powered actuations by 60%. We demonstrate that the device can provide enough torque throughout the ROM of the elbow joint for daily life assistance. Specifically, the device generates 13.5 Nm of torque at 90°. Experimental testing in five healthy individuals and two individuals with Amyotrophic Lateral Sclerosis (ALS) demonstrates its impact on wearer muscle activity and kinematics. The results with healthy subjects show that the device was able to reduce the bicep muscle activity by an average of 49.1±13.3% during static and dynamic exercises, 43.6±11.1% during simulated ADLs, and provided an assisted ROM of 134°±13°. Both ALS participants reported a reduced rate of perceived exertion during both static and dynamic tasks while wearing the device and had an average ROM of 115°±8°. Future work will explore other applications of the IPS and extend the approach to assisting multiple joints.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR58425.2023.10304679DOI Listing

Publication Analysis

Top Keywords

soft wearable
8
elbow flexion
8
flexion assistance
8
muscle activity
8
static dynamic
8
air efficient
4
efficient soft
4
wearable robot
4
robot high-torque
4
high-torque elbow
4

Similar Publications

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

Epitaxy Orientation and Kinetics Diagnosis for Zinc Electrodeposition.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed.

View Article and Find Full Text PDF

Optimal Sensor Placement for Motion Tracking of Soft Wearables Using Bayesian Sampling.

Soft Robot

December 2024

Department of Mechanical Engineering, Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.

Soft sensors integrated or attached to robots or human bodies enable rapid and accurate estimation of the physical states of the target systems, including position, orientation, and force. While the use of a number of sensors enhances precision and reliability in estimation, it may constrain the movement of the target system or make the entire system complex and bulky. This article proposes a rapid, efficient framework for determining where to place the sensors on the system given the limited number of available sensors.

View Article and Find Full Text PDF

Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!