Integrating mobile eye-tracking and motion capture emerges as a promising approach in studying visual-motor coordination, due to its capability of expressing gaze data within the same laboratory-centered coordinate system as body movement data. In this paper, we proposed an integrated eye-tracking and motion capture system, which can record and analyze temporally and spatially synchronized gaze and motion data during dynamic movement. The accuracy of gaze measurement were evaluated on five participants while they were instructed to view fixed vision targets at different distances while standing still or walking towards the targets. Similar accuracy could be achieved in both static and dynamic conditions. To demonstrate the usability of the integrated system, several walking tasks were performed in three different pathways. Results revealed that participants tended to focus their gaze on the upcoming path, especially on the downward path, possibly for better navigation and planning. In a more complex pathway, coupled with more gaze time on the pathway, participants were also found having the longest step time and shortest step length, which led to the lowest walking speed. It was believed that the integration of eye-tracking and motion capture is a feasible and promising methodology quantifying visual-motor coordination in locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR58425.2023.10304692 | DOI Listing |
Sci Rep
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd, Beer-Sheva, Israel.
During flight, spatial disorientation (SD) commonly occurs when a pilot's perception conflicts with the aircraft's actual motion, attitude, or position. A prevalent form of SD is the somatogyral illusion, which is elicited by constant speed rotation and causes a false perception of motion in the opposite direction when the rotation ceases. This research aimed to investigate changes in brain activity that occur when experiencing a somatogyral illusion by simulating conditions closely mimicking flight conditions to gain insight into how to better manage this illusion during flight.
View Article and Find Full Text PDFEarly Hum Dev
January 2025
Vestibular and Oculomotor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands. Electronic address:
Background And Aims: Preterm birth increases the risk of neurodevelopmental impairments, such as Cerebral Visual Impairment (CVI), which affects visual processing. Assessing visual functions in young children is challenging with traditional methods that often rely on verbal/motor responses. The aim of the study was to investigate the developmental trajectories of Visual Orienting Functions (VOF) in children born very preterm (<32 weeks gestational age) between 2 and 5 years corrected age (CA) using eye tracking.
View Article and Find Full Text PDFData Brief
December 2024
Department of Neurophysics, Philipps University Marburg, Karl-von-Frisch Straße 8a, 35043 Marburg, Hesse, Germany.
We present a comprehensive dataset comprising head- and eye-centred video recordings from human participants performing a search task in a variety of Virtual Reality (VR) environments. Using a VR motion platform, participants navigated these environments freely while their eye movements and positional data were captured and stored in CSV format. The dataset spans six distinct environments, including one specifically for calibrating the motion platform, and provides a cumulative playtime of over 10 h for both head- and eye-centred perspectives.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
Purpose: Serial dependence refers to the attraction of current perceptual responses toward previously seen stimuli. Despite extensive research on serial dependence, fundamental questions, such as how serial dependence changes with development, whether it affects the perception of sensory input, and what qualifies as serial dependence, remain unresolved. The current study aims to address these questions.
View Article and Find Full Text PDFJ Neurosci Methods
December 2024
Charleston Area Medical Center, Charleston, WV, USA.
Background: 21st century neurology will require scalable and quantitative tools that can improve neurologic evaluations over telehealth and expand access to care. Commercially available mixed-reality headsets allow for simultaneous presentation of stimuli via holograms projected into the real world and objective and quantitative measurement of hand movement, eye movement, and phonation.
New Method: We created 6 tasks designed to mimic standard neurologic assessments and administered them to a single participant via the Microsoft HoloLens 2 mixed-reality headset.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!