Background: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined.

Methods: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages.

Results: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP monocyte/macrophages and resident microglia engulfing NeuN or TUNEL cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway.

Conclusions: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633953PMC
http://dx.doi.org/10.1186/s12974-023-02940-5DOI Listing

Publication Analysis

Top Keywords

brain injury
20
efferocytosis
8
axon guidance
8
guidance molecule
8
molecule epha4
8
debris clearance
8
bone marrow
8
resident microglia
8
cortex brain
8
p-erk p-stat6
8

Similar Publications

Traumatic Brain Injury (TBI) is a devastating cause of death and disability. Outcomes following TBI have been extensively studied; however, less attention has been given to identifying characteristics of individuals who have a favorable outcome following severe TBI. We conducted a retrospective analysis of a database containing information on TBI patients admitted to a level 1 trauma center between 2015 and 2021.

View Article and Find Full Text PDF

TREM2 affects DAM-like cell transformation in the acute phase of TBI in mice by regulating microglial glycolysis.

J Neuroinflammation

January 2025

Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Background: Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear.

View Article and Find Full Text PDF

Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

Introduction: Repetitive head impacts (RHI) in sports may represent a risk factor for long-term cognitive and neurological sequelae. Recent studies have identified an association between playing football at the top level and an elevated risk of cognitive impairment and neurodegenerative disease. However, these were conducted on men, and there is a knowledge gap regarding these risks in female athletes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!