Industrial wastewater irrigation of agricultural crops can cause a lot of environmental and health problems in developing countries due to heavy metals deposition in agricultural soils as well as edible plant consumption by human beings. Therefore, this study was conducted to find out the heavy metals concentration in industrial wastewater and soil irrigated with that wastewater. In addition, the aim was to determine the impact of industrial wastewater irrigation on Parthenium hysterophorus and Zea mays genes involved in growth improvement and inhibition. For this purpose, plant samples from agriculture fields irrigated with wastewater from Hattar Industrial Estate (HIE) of Haripur, Pakistan, and control plants from non-contaminated soil irrigated with tape water were collected after 15 and 45 days of germination. Heavy metals concentration in the collected plant samples, wastewater, and soil was determined. The results revealed that the soil of the sample collection site was predominantly contaminated with Cr, Pb, Ni, Cu, Co, Zn, and Cd up to the concentrations of 38.98, 21.14, 46.01, 155.73, 12.50, 68.50, and 7.01 mg/kg, respectively. The concentrations of these heavy metals were found to surpass the permissible limit in normal agricultural soil. Expansins, cystatins (plant growth enhancers), and metacaspases (plant growth inhibitor) gene expression were studied through reverse transcription polymerase chain reaction. The results showed that the expression of these genes was higher in samples collected from wastewater-irrigated soils as compared to control. The expression of these genes was observed in 45 days old samples, 15 days old samples, and control. Taken together, this study suggests the use of Parthenium and maize for phytoremediation and that they should not be used for eating purposes if irrigated with industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-12028-5 | DOI Listing |
J Environ Manage
December 2024
China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.
Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China. Electronic address:
Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt. Electronic address:
The discharge of untreated dye waste from various industrial sectors into wastewater poses significant environmental and health risks. This study presents an innovative approach by developing a cost-effective and eco-friendly hybrid mesoporous nanocomposite, silver nanoparticles@mesoporous mango peel-derived carbon (AgNPs@MMC), synthesized from agricultural waste (mango peels) and urban waste (X-ray film waste). The core objectives of this work are: (i) recycling agricultural and urban waste to produce valuable materials; (ii) achieving effective removal of methyl violet 10B (MV10B) through simultaneous adsorption and photocatalytic degradation; and (iii) evaluating the antimicrobial properties of the developed material.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
Researchers in the field of photocatalysis are interested in finding a solution to the problem of charge transfer and recombination in photodegradation mechanisms. The ideal photoactive catalyst would be inexpensive, environmentally friendly, easily manufactured, and highly efficient. Graphitic carbon nitride (g-CN) and metal oxide (MOx) based nanocomposites (g-CN/MOx) are among the photocatalysts that provide the best results in terms of charge transfer capacity, redox capabilities, and charge recombination inhibition.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Henan Agricultural University, Zhengzhou, Henan 450002, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!