Transient receptor potential vanilloid 6 (TRPV6) is a highly selective calcium-ion channel that belongs to the TRPV family. TRPV6 is widely distributed in the brain, but its role in neurological diseases such as epilepsy remains unknown. Here, we report for the first time that TRPV6 expression is upregulated in the hippocampus of a pilocarpine-induced status epilepticus model, mainly in the suprapyramidal bundle of the mossy fiber (MF) projection of the hippocampal CA3 regions. We found that TRPV6 overexpression via viral vector transduction attenuated abnormal MF sprouting (MFS), whereas TRPV6 knockdown aggravated the development of MFS and the incidence of recurrent seizures during epileptogenic progression. In the in vitro experiments, our results showed that modulation of TRPV6 expression resulted in a change in axonal formation in cultured hippocampal neurons. In addition, we found that TRPV6 was implicated in the regulation of Akt-glycogen synthase kinase-3-β activity, which is closely related to the cellular mechanism of axonal outgrowth. Therefore, these findings suggest that TRPV6 may regulate the formation of aberrant synaptic circuits during epileptogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-023-03748-3DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential vanilloid
8
trpv6
8
trpv6 expression
8
vanilloid modulates
4
modulates aberrant
4
aberrant axonal
4
axonal sprouting
4
sprouting mouse
4

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!