Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To clarify the characteristics of compounds with strong or weak nitrification inhibition in sewage, 64 organic compounds including compounds registered in Pollutant Release and Transfer Register (PRTR) were evaluated in terms of their chemical structures and molecular weights. Nineteen compounds showed strong nitrification inhibition by testing with Nitrosomonas europaea. Compounds with thioamide structures had the lowest median value of EC (0.017 mg/L), followed by those with alkyne structures (0.121 mg/L), chlorophenol structures (0.300 mg/L), and then azole structures (0.365 mg/L). In contrast, 33 of the 64 compounds showed weak nitrification inhibition at a concentration of 10 mg/L, 27 of which were categorized into three main groups: long-chain alcohol structures, alkyne structures with a phenyl group, and aromatic structures. Most compounds with strong nitrification inhibition had a low molecular weight (MW) from 50 to 200. Meanwhile, the proportion of compounds with weak nitrification inhibition tended to be greater with increasing MW and such compounds were predominant at higher molecular weights above 300. The correlations of results derived from tests of nitrification inhibition based on ISO 9509 and N. europaea showed that 24 out of 30 compounds provided results that were highly correlated between these tests (R = 0.85), while 4 compounds with chlorophenol structures and 2 compounds with alkyne structures showed weaker inhibition rates in the ISO 9509 test than in the N. europaea test. Our results indicate that the magnitude of nitrification inhibition depends on MW in addition to the chemical structure, which is helpful in the search for the cause of nitrification inhibition in wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-12074-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!