A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loofah-inspired sodium alginate/carboxymethyl cellulose sodium-based porous frame for all-weather super-viscous crude oil adsorption and wastewater treatment in harsh environment. | LitMetric

Loofah-inspired sodium alginate/carboxymethyl cellulose sodium-based porous frame for all-weather super-viscous crude oil adsorption and wastewater treatment in harsh environment.

Carbohydr Polym

College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Published: January 2024

Solar-driven viscosity reduction of highly viscous crude oil has emerged as an environmentally friendly method to address large-scale oil spills. However, the challenge lies in the limited availability of sunlight during cloudy days and at night, which hinders the effectiveness of green advanced porous materials. This study developed all-weather-available advanced porous materials in the form of loofah-like structured porous frame composed of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane/MXene/carbon nanotubes (CNTs)/sodium alginate (SA)/carboxymethyl cellulose sodium (NaCMC). MXene and CNTs formed a continuous and stable network that enabled PMCSCPs to rapidly reduce crude oil viscosity for all-day based on photothermal and electrothermal conversions. Additionally, loofah-like porous structure and oriented pipeline biomass skeleton endowed PMCSCPs with stable and rapid adsorption capacity and speed. Considering the complexity of the external environment and oily wastewater composition, we verified the separation performance of PMCSCPs for metal ions and dyes and the ice-breaking ability under icy conditions. PMCSCPs provided a novel approach to achieving clean, high-efficiency, all-day remediation of ultra-viscous crude oil. This "Three birds with one stone" approach is expected to be obtained from nature and used on a large scale, replacing conventional porous adsorbent materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121450DOI Listing

Publication Analysis

Top Keywords

crude oil
16
porous frame
8
advanced porous
8
porous materials
8
porous
6
oil
5
loofah-inspired sodium
4
sodium alginate/carboxymethyl
4
alginate/carboxymethyl cellulose
4
cellulose sodium-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!