A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes. Alginate beads with or without starch were of similar size (1.69-1.74 mm), but curcumin retention was improved 1.4-2.8-fold in the presence of different starches. Thus, subjecting the curcumin-loaded beads to in vitro simulated gastrointestinal digestion resulted in retention of 70, 43 and 22 % of the curcumin entrapped in the presence of modified, unmodified, or no starch, respectively. Molecular docking provided support for curcumin interacting with starch via hydrogen bonding, hydrophobic contacts and π-π stacking. The study highlights the potential of utilizing low concentration of dual-enzyme modified starch with alginate to create a versatile vehicle for controlled release and targeted delivery of bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121387DOI Listing

Publication Analysis

Top Keywords

starch modification
8
modification branching
8
branching enzyme
8
enzyme 4-α-glucanotransferase
8
alginate beads
8
enzyme modified
8
modified starch
8
modified unmodified
8
starch
7
beads
5

Similar Publications

Artocarpus lakoocha seed starch and thymol-based films for extending fresh fruit shelf life: Antioxidant and physicochemical properties.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.

This study addresses the need for sustainable fruit preservation packaging by developing biodegradable films from nonconventional starch sources. The purpose was to enhance film properties and antioxidant capabilities using fatty acid-modified Artocarpus lakoocha starch films incorporated with thymol. The objective is to evaluate the impact of fatty acid modification on film characteristics and the antioxidant potential of thymol-unfused films.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored using drum-dried overripe Kepok plantain flour (KPF) as a substitute for wheat flour in instant noodles to improve their nutritional and textural properties.
  • Noodles with 10%, 20%, and 30% KPF substitutions showed varying effects on attributes like adhesiveness, elasticity, and cooking quality, with 20% yielding the best balance of firmness, shape retention, and reduced stickiness.
  • KPF also enhanced nutritional value by increasing resistant starch content and decreasing oil absorption, showcasing its potential as a functional ingredient for healthier instant noodles.
View Article and Find Full Text PDF

Sorghum starch: Composition, structure, functionality, and strategies for its improvement.

Compr Rev Food Sci Food Saf

January 2025

Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China.

Sorghum (Sorghum bicolor L. Moench) is increasingly recognized as a resilient and climate-adaptable crop that holds significant potential to enhance global food security sustainably. Compared to other common cereal grains, sorghum boasts a more diverse nutritional profile.

View Article and Find Full Text PDF

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

The widespread use of copper (Cu) in industrial and agricultural settings leads to the accumulation of excess Cu within aquatic ecosystems, posing a threat to organism health. Microalgal bioremediation has emerged as a popular and promising solution to mitigate the risks. Nevertheless, the genetic underpinnings and engineering tactics involved in heavy metal bioremediation by microalgae remain inadequately elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!