Polycyclic aromatic hydrocarbons (PAHs) pose significant environmental risks due to their toxicity and carcinogenic properties. This research seeks to pinpoint protein targets in crop xylem sap related to PAH contamination and delve into their protein-ligand interactions using computational tools. Proteomic assessment revealed differentially expressed proteins (DEPs), which were subjected to virtual high-throughput screening. Notably, the phenanthrene's influence on xylem sap proteins in maize and wheat was more pronounced than in soybean, with DEPs expression peak at 24 h post-treatment. Maize DEPs were predominantly associated with lipid biosynthesis. Phenanthrene impacted cell membrane hydrophobicity, limiting PAH adsorption and decreasing its concentration in maize xylem sap. Wheat DEPs exhibited an increase in ABC transporters after 24 h of phenanthrene exposure. ABC transporters interacted with stress-responsive proteins like C6TIY1-Co-chaperone p23 and others that either facilitate or inhibit PAH transport, including Indeno[1,2,3-cd]Pyrene and C6TIY1-Co-chaperone protein p23. Both maize and wheat created high-affinity complexes between specific proteins and PAHs, influencing their transport. This study provides insights into the mechanisms of PAH regulation and movement within plant xylem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122854DOI Listing

Publication Analysis

Top Keywords

xylem sap
16
polycyclic aromatic
8
aromatic hydrocarbons
8
crop xylem
8
sap proteins
8
maize wheat
8
abc transporters
8
xylem
5
proteins
5
expeditious profiling
4

Similar Publications

Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.

View Article and Find Full Text PDF

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.

View Article and Find Full Text PDF

Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator , a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of , as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA).

View Article and Find Full Text PDF

Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals.

View Article and Find Full Text PDF

Mechanisms of manganese uptake and long-distance transport in the hyperaccumulator Celosia argentea Linn.

Ecotoxicol Environ Saf

December 2024

College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:

Celosia argentea Linn. is a hyperaccumulator for the remediation of manganese (Mn)-contaminated soil owing to its rapid growth, high decontamination capacity, and strong stress resistance. However, little is known about the processes involved in long-distance transport of Mn in hyperaccumulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!