As a part of global climate change, precipitation patterns in arid regions will change significantly, and the different responses of desert plants to these changes will lead to alterations in community composition, thereby impacting ecosystem stability. Thus, understanding the mechanism underlying the associations among physiological response variables considering changing precipitation is crucial. Here, water-use strategies, functional traits, and physiological processes (e.g., photosynthesis (A), transpiration (T), leaf water potential (Ψ), stomatal conductance (g), and soil respiration (R)) were measured in a precipitation experiment with two coexisting desert riparian species to determine how water-use strategies and functional traits operate together in generating physiological response mechanisms. The results showed that the two species exhibited divergent response pathways of physiological processes following rainfall events, although both were identified as isohydric plants with stringent stomatal regulation. For the shallow-rooted species N. sphaerocarpa, g was sensitive to changes in both surface soil moisture (S) and Ψ, and S was the primary factor influencing R. These results were supported by the preference for shallow water and predominance of functional traits associated with drought avoidance. For the deep-rooted species R. soongorica, variations in g were decoupled from S and directly influenced by enhanced Ψ, A was the main factor affecting R, while Ψ negatively affected R. These correlations could be attributed to the preference for deep water and functional traits associated with drought tolerance. These findings suggest that R. soongorica had a stronger tolerance to environmental water deficits and may expand extensively under drier climatic conditions in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168238 | DOI Listing |
Protoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFHist Philos Life Sci
January 2025
Department Civilization and Forms of Knowledge, University of Pisa, Pisa, PI, Italy.
The selected effects theory is supposed to provide a fully naturalistic basis for statements about what biological traits or processes are for without appeal to final causes or intelligent design. On the selected effects theory, biologists are allowed to say, for instance, that hindwing eyespots on butterfly wings serve to deflect predators' attacks away from vital organs because a similar fitness-enhancing effect explains why eyespots themselves were favoured by natural selection and persisted in the population. This is known as the explanatory dimension of the selected effects theory.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.
View Article and Find Full Text PDFVet Res Commun
January 2025
Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain.
View Article and Find Full Text PDFPlanta
January 2025
Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!