Street trees support climate resiliency through a variety of pathways, such as offsetting urban heat and attenuating storm water runoff. While urban trees in arid and semiarid ecosystems have been shown to take up water from irrigation, it is unknown where street trees in mesic cities obtain their water. In this study, we use natural abundance stable isotopes to estimate the proportional sources of water taken up by Acer platanoides street trees in Boston, Massachusetts, United States, including precipitation, irrigation, groundwater, and wastewater. We use Bayesian multisource mixing models to estimate water sources by comparing the natural abundance isotopic ratios of hydrogen and oxygen across potential water sources with water extracted from tree stem samples. We find that during the summer of 2021, characterized by anomalously high rainfall, street trees predominantly utilized water from precipitation. Precipitation accounted for 72.3 % of water extracted from trees sampled in August and 65.6 % from trees sampled in September. Of the precipitation taken up by street trees, most water was traced back to large storm events in July, with July rainfall alone accounting for up to 84.0 % of water found within street trees. We find strong relationships between canopy cover fractions and the proportion of precipitation lost to evapotranspiration across the study domain, supporting the conclusion that tree planting initiatives result in storm water mitigation benefits due to utilization of water from precipitation by urban vegetation. However, while the mature trees studied here currently support their water demand from precipitation, the dependency of street trees on precipitation in mesic cities may lead to increased water stress in a changing climate characterized by a higher frequency and severity of drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168411 | DOI Listing |
Plant Dis
December 2024
Cornell University, Plant Pathology-Geneva, 630 West North Street, 221 Barton Lab, Geneva, New York, United States, 14456;
Fire blight is an economically devastating disease caused by the bacterium . Infections lead can shoot blight and, when unmanaged, become systemic and can quickly cause tree death and spread through an orchard via active infections sites producing bacterial ooze. With climate change, increasingly popular high-density training systems, and the susceptibility of many consumers desired apple cultivars, shoot blight management has become exceptionally challenging despite the diverse management tactics available.
View Article and Find Full Text PDFJMIR Med Inform
December 2024
Department of Neurology, Beth Israel Deaconess Medical Center, Boston, US.
Background: Delirium is common in hospitalized patients and correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screening and prevention.
Objective: To develop a machine learning algorithm to identify patients at highest risk of delirium in the hospital each day in an automated fashion based on data available in the electronic medical record, reducing the barrier to large-scale delirium screening.
Landsc Ecol
December 2024
Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC H3C 3P8 Canada.
Context: Trees play a vital role in reducing street-level particulate matter (PM) pollution in metropolitan areas. However, the optimal tree growth type for maximizing the retention of various sizes of PM remains uncertain.
Objectives: This study assessed the PM reduction capabilities of evergreen and deciduous broadleaf street trees, focusing on how leaf phenology influences the dispersion of pollutants across particle sizes.
Tree Physiol
December 2024
Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
It has been postulated that stemflow, precipitation that flows from plant crowns down along branches and stems to soils, benefits plants that generate it because it increases plant-available soil water near the base of the plant; however, little direct evidence supports this postulation. Were plants' crowns to preferentially route water to their roots, woody plants with large canopies could benefit. For example, piñon and juniper tree encroachment into sagebrush steppe ecosystems could be facilitated by intercepted precipitation routed to tree roots as stemflow, hypothetically reducing water available for shrubs and grasses.
View Article and Find Full Text PDFEur J Radiol Open
December 2024
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Objectives: To explore the feasibility of different radiomics models for predicting the malignant potential of small intestinal stromal tumors (SISTs), and to select the best radiomics model.
Methods: A retrospective analysis of 140 patients with SISTs was conducted. Radiomics features were extracted from CT-enhanced images.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!