Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microplastics and natural organic matter are present in the aquatic environment and their reciprocal interaction plays important roles in the transport and behavior of nutrients and contaminants. Nevertheless, we lack mechanistic understanding on these interactions, especially in the case of biodegradable plastics. Here we investigate the adsorption of a commercial humic acid onto poly (lactic acid) (PLA) microplastics in aqueous solution. While the pseudo-second order kinetic model provided a more accurate representation of the adsorption kinetics, the Elovich model also produced a good fit, suggesting that chemisorption may be the rate-limiting step. The equilibrium data was better fit by the Langmuir model, that provided a maximum adsorption capacity of 0.118 ± 0.006 mg·g. The obtained values for the separation factor (R) and free energy (E) suggest that adsorption of humic acid onto PLA is controlled by physisorption. We studied the effects of pH, ionic strength, and PLA concentration on the adsorption of humic acid onto PLA and demonstrated that electrostatic interactions and aggregation are important. The humic acid was characterized by Fourier-transform infrared (FTIR) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and parallel factor analysis (PARAFAC), before and after interacting with PLA. This set of analyses demonstrated that PLA caused alterations in the molecular structure of humic acid, primarily attributed to modifications in hydrogen bonding and hydrophobic interactions. Therefore, we hypothesize that the carboxylic groups of humic acid formed dimers in contact with PLA. This study provides new insights into the interactions between organic matter and a biodegradable microplastic in aqueous systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168366 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!