A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An inexpensive paracetamol sensor based on an acid-activated carbon fiber microelectrode. | LitMetric

An inexpensive paracetamol sensor based on an acid-activated carbon fiber microelectrode.

Chemosphere

Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Químicas, Quito, 170525, Ecuador. Electronic address:

Published: January 2024

Paracetamol, a contaminant of emerging concern, has been detected in different bodies of water, where it can impact ecological and human health. To quantify this paracetamol, electroanalytical methods have gained support. Thus, the present study developed a simple, inexpensive, and environmentally friendly method for paracetamol quantification using a carbon fiber microelectrode based on commercial carbon fiber. To improve the carbon fiber microelectrode's paracetamol sensitivity and selectivity, it was subjected to an activation process via electrochemical oxidation in an acid medium (HSO or HNO), using 20 consecutive cycles of cyclic voltammetry. The treated (activated) carbon fiber microelectrode was characterized using scanning electron microscopy and electrochemical techniques, including chronoamperometry and electrochemical impedance spectroscopy. The HSO-activated carbon fiber microelectrode exhibited enhanced figures of merit, with a linear dynamic range of paracetamol detection from 0.5 to 11 μmol L and a limit of detection of 0.21 μmol L under optimized conditions. The method was optimized by quantifying paracetamol in commercial pharmaceutical tablets, spiked running tap water, and river water (Pita River, Quito, Ecuador, latitude -0.364955°, longitude -78.404538°); the respective recovery values were 102.89, 103.93, and 112.40%. The results demonstrated an acceptable level of accuracy and the promising applicability of this carbon fiber microelectrode as a sensor to detect paracetamol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140586DOI Listing

Publication Analysis

Top Keywords

carbon fiber
28
fiber microelectrode
20
carbon
7
fiber
7
paracetamol
7
microelectrode
5
inexpensive paracetamol
4
paracetamol sensor
4
sensor based
4
based acid-activated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!