A Preliminary Investigation into Search and Matching for Tumor Discrimination in World Health Organization Breast Taxonomy Using Deep Networks.

Mod Pathol

Rhazes Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota; Kimia Lab, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

Published: February 2024

Breast cancer is one of the most common cancers affecting women worldwide. It includes a group of malignant neoplasms with a variety of biological, clinical, and histopathologic characteristics. There are more than 35 different histologic forms of breast lesions that can be classified and diagnosed histologically according to cell morphology, growth, and architecture patterns. Recently, deep learning, in the field of artificial intelligence, has drawn a lot of attention for the computerized representation of medical images. Searchable digital atlases can provide pathologists with patch-matching tools, allowing them to search among evidently diagnosed and treated archival cases, a technology that may be regarded as computational second opinion. In this study, we indexed and analyzed the World Health Organization breast taxonomy (Classification of Tumors fifth ed.) spanning 35 tumor types. We visualized all tumor types using deep features extracted from a state-of-the-art deep-learning model, pretrained on millions of diagnostic histopathology images from the Cancer Genome Atlas repository. Furthermore, we tested the concept of a digital "atlas" as a reference for search and matching with rare test cases. The patch similarity search within the World Health Organization breast taxonomy data reached >88% accuracy when validating through "majority vote" and >91% accuracy when validating using top n tumor types. These results show for the first time that complex relationships among common and rare breast lesions can be investigated using an indexed digital archive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891482PMC
http://dx.doi.org/10.1016/j.modpat.2023.100381DOI Listing

Publication Analysis

Top Keywords

health organization
12
organization breast
12
breast taxonomy
12
tumor types
12
search matching
8
breast lesions
8
accuracy validating
8
breast
6
preliminary investigation
4
search
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!