A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoliposomal Trachyspermum ammi (L) sprague essential oil for effective control of malaria mosquito larvae, Anopheles stephensi Liston. | LitMetric

Nanoliposomal Trachyspermum ammi (L) sprague essential oil for effective control of malaria mosquito larvae, Anopheles stephensi Liston.

Exp Parasitol

Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran. Electronic address:

Published: December 2023

Controlling mosquito vectors at immature stages using larvicides is a practical strategy to stave off mosquito-borne diseases such as malaria. Developing nanoliposomes bearing essential oil is a promising approach to improving the efficacy and stability of EOs-derived larvicides. The main aim of this investigation was to assess the efficacy of nanoliposome containing Trachyspermum ammi L. EO (TAEO-NL) as a new potential formulation to control Anopheles stephensi Liston (Diptera, Culicidae) mosquito larvae. The chemical constituents of T. ammi L. essential oil (TAEO) were first investigated using gas chromatography-mass spectrometry (GC-MS) analysis; its dominant component (48.22%) was thymol. TAEO-NL with a particle size of 54.6 ± 5 nm and zeta potential of -18 ± 0.5 mV were then prepared using the ethanol injection method. Besides, the successful loading of TAEO was confirmed using Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy analysis. A significant difference (P < 0.05) was observed in the efficacy of TAEO-NL and TAEO with lethal concentration 50% (LC) values of 14.09 and 59.47 μg/mL against An. stephensi larvae. However, free nanoliposomes show negligible larvicidal effects (<5%). This nano-formulation could thus be suggested as a green product against insects to impede transmission of deadly infectious diseases with possible field applicability scope.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2023.108644DOI Listing

Publication Analysis

Top Keywords

essential oil
12
trachyspermum ammi
8
mosquito larvae
8
anopheles stephensi
8
stephensi liston
8
nanoliposomal trachyspermum
4
ammi sprague
4
sprague essential
4
oil effective
4
effective control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!