Deep insights into biodegradability mechanism and growth cycle adaptability of polylactic acid/hyperbranched cellulose nanocrystal composite mulch.

Int J Biol Macromol

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, College of Textile Science and Engineering, International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua. University, 2999 Renmin North Road, Songjiang District, Shanghai 201620, China. Electronic address:

Published: January 2024

The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127866DOI Listing

Publication Analysis

Top Keywords

mulch
9
growth cycle
8
composite mulch
8
pcp mulch
8
deep insights
4
insights biodegradability
4
biodegradability mechanism
4
mechanism growth
4
cycle adaptability
4
adaptability polylactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!